Nonparametric Two-Sample Test for Networks Using Joint Graphon Estimation

This paper focuses on the comparison of networks on the basis of statistical inference. For that purpose, we rely on smooth graphon models as a nonparametric modeling strategy that is able to capture complex structural patterns. The graphon itself can be viewed more broadly as density or intensity function on networks, making the model a natural choice for comparison purposes. Extending graphon estimation towards modeling multiple networks simultaneously consequently provides substantial information about the (dis-)similarity between networks. Fitting such a joint model - which can be accomplished by applying an EM-type algorithm - provides a joint graphon estimate plus a corresponding prediction of the node positions for each network. In particular, it entails a generalized network alignment, where nearby nodes play similar structural roles in their respective domains. Given that, we construct a chi-squared test on equivalence of network structures. Simulation studies and real-world examples support the applicability of our network comparison strategy.

[1]  Santiago Segarra,et al.  Joint Network Topology Inference Via a Shared Graphon Model , 2022, IEEE Transactions on Signal Processing.

[2]  G. Kauermann,et al.  Stochastic Block Smooth Graphon Model , 2022, 2203.13304.

[3]  Francesca Ieva,et al.  Comparing methods for comparing networks , 2019, Scientific Reports.

[4]  Hu Lu,et al.  Characterizing and Predicting Autism Spectrum Disorder by Performing Resting-State Functional Network Community Pattern Analysis , 2019, Front. Hum. Neurosci..

[5]  Goran Kauermann,et al.  EM-based smooth graphon estimation using MCMC and spline-based approaches , 2019, Soc. Networks.

[6]  D. Moratal,et al.  Evaluating Functional Connectivity Alterations in Autism Spectrum Disorder Using Network-Based Statistics , 2018, Diagnostics.

[7]  J. Gold,et al.  On the nature and use of models in network neuroscience , 2018, Nature Reviews Neuroscience.

[8]  J. A. Méndez-Bermúdez,et al.  Identifying network structure similarity using spectral graph theory , 2018, Appl. Netw. Sci..

[9]  Scott J. Emrich,et al.  GRAFENE: Graphlet-based alignment-free network approach integrates 3D structural and sequence (residue order) data to improve protein structural comparison , 2017, Scientific Reports.

[10]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[11]  Tijana Milenkovic,et al.  Proper evaluation of alignment-free network comparison methods , 2015, Bioinform..

[12]  Xi-Nian Zuo,et al.  A Connectome Computation System for discovery science of brain , 2015 .

[13]  J Steve Marron,et al.  Overview of object oriented data analysis , 2014, Biometrical journal. Biometrische Zeitschrift.

[14]  Gesine Reinert,et al.  Alignment-free protein interaction network comparison , 2014, Bioinform..

[15]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[16]  Edoardo M. Airoldi,et al.  A Consistent Histogram Estimator for Exchangeable Graph Models , 2014, ICML.

[17]  Patrick J. Wolfe,et al.  Network histograms and universality of blockmodel approximation , 2013, Proceedings of the National Academy of Sciences.

[18]  D. Ruppert,et al.  Flexible Copula Density Estimation with Penalized Hierarchical B‐splines , 2013 .

[19]  Stéphane Robin,et al.  Variational Bayes model averaging for graphon functions and motif frequencies inference in W-graph models , 2013, Statistics and Computing.

[20]  P. Wolfe,et al.  Nonparametric graphon estimation , 2013, 1309.5936.

[21]  Cedric E. Ginestet,et al.  Cognitive relevance of the community structure of the human brain functional coactivation network , 2013, Proceedings of the National Academy of Sciences.

[22]  Daniel P. Kennedy,et al.  The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism , 2013, Molecular Psychiatry.

[23]  Jure Leskovec,et al.  Learning to Discover Social Circles in Ego Networks , 2012, NIPS.

[24]  Jukka-Pekka Onnela,et al.  Taxonomies of networks from community structure. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  P. Bickel,et al.  The method of moments and degree distributions for network models , 2011, 1202.5101.

[26]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[27]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[28]  O. Kuchaiev,et al.  Topological network alignment uncovers biological function and phylogeny , 2008, Journal of The Royal Society Interface.

[29]  Ping Zhu,et al.  A study of graph spectra for comparing graphs and trees , 2008, Pattern Recognit..

[30]  C. Butts Social network analysis: A methodological introduction , 2008 .

[31]  E. Todeva Networks , 2007 .

[32]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[33]  K. Kaski,et al.  The International Trade Network: weighted network analysis and modelling , 2007, 0707.4343.

[34]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[35]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[36]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[37]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[38]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[39]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[40]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[41]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[42]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[43]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[44]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[45]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[46]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[47]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[48]  Vigneshwaran Subbaraju,et al.  Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional‐magnetic resonance imaging: A spatial filtering approach , 2017, Medical Image Anal..

[49]  Tina Eliassi-Rad,et al.  A Guide to Selecting a Network Similarity Method , 2014, SDM.

[50]  Khundrakpam Budhachandra,et al.  The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives , 2013 .

[51]  David Ruppert,et al.  Semiparametric regression during 2003-2007. , 2009, Electronic journal of statistics.

[52]  P. Diaconis,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[53]  M. Wand,et al.  Semiparametric Regression: Author Index , 2003 .

[54]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .