Splitting integrators for stochastic Lie-Poisson systems

We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie–Poisson systems, namely: stochastically perturbed Maxwell–Bloch, rigid body and sine– Euler equations.

[1]  T. Gard,et al.  Stability for multispecies population models in random environments , 1986 .

[2]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[3]  G. N. Milstein,et al.  Numerical Methods for Stochastic Systems Preserving Symplectic Structure , 2002, SIAM J. Numer. Anal..

[4]  H. Owhadi,et al.  Stochastic Variational Integrators , 2007, 0708.2187.

[5]  Jialin Hong,et al.  Generating functions for stochastic symplectic methods , 2013 .

[6]  V. Zeitlin,et al.  Finite-mode analogs of 2D ideal hydrodynamics: coadjoint orbits and local canonical structure , 1991 .

[7]  Darryl D. Holm,et al.  Multiple lie-poisson structures, reductions, and geometric phases for the Maxwell-Bloch travelling wave equations , 1992 .

[8]  Xiaohua Ding,et al.  Symplectic conditions and stochastic generating functions of stochastic Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise , 2012, Appl. Math. Comput..

[9]  Yau Shu Wong,et al.  High-Order Symplectic Schemes for Stochastic Hamiltonian Systems , 2014 .

[10]  Tetsuya Misawa,et al.  Conserved Quantities and Symmetries Related to Stochastic Dynamical Systems , 1999 .

[11]  Kevin Burrage,et al.  Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise , 2012, J. Comput. Appl. Math..

[12]  Darryl D. Holm,et al.  Noise and dissipation in rigid body motion , 2015, 1606.06308.

[13]  Kenth Engø-Monsen,et al.  Numerical Integration of Lie-Poisson Systems While Preserving Coadjoint Orbits and Energy , 2001, SIAM J. Numer. Anal..

[14]  Darryl D. Holm,et al.  Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows , 2018, J. Nonlinear Sci..

[15]  Tetsuya Misawa,et al.  Conserved quantities and symmetry for stochastic dynamical systems , 1994 .

[16]  Oscar Gonzalez,et al.  On the Stochastic Modeling of Rigid Body Systems with Application to Polymer Dynamics , 2010, Multiscale Model. Simul..

[17]  G. N. Milstein,et al.  Symplectic Integration of Hamiltonian Systems with Additive Noise , 2001, SIAM J. Numer. Anal..

[18]  J. Ortega,et al.  REDUCTION, RECONSTRUCTION, AND SKEW-PRODUCT DECOMPOSITION OF SYMMETRIC STOCHASTIC DIFFERENTIAL EQUATIONS , 2007, 0705.3156.

[19]  Lijin Wang,et al.  Stochastic symplectic methods based on the Padé approximations for linear stochastic Hamiltonian systems , 2017, J. Comput. Appl. Math..

[20]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[21]  Charles-Edouard Br'ehier,et al.  On Asymptotic Preserving schemes for a class of Stochastic Differential Equations in averaging and diffusion approximation regimes , 2020, ArXiv.

[22]  R. McLachlan,et al.  Explicit Lie-Poisson integration and the Euler equations. , 1993, Physical review letters.

[23]  David Cohen,et al.  Drift-preserving numerical integrators for stochastic Poisson systems , 2021, International Journal of Computer Mathematics.

[24]  Jesús María Sanz-Serna,et al.  A Technique for Studying Strong and Weak Local Errors of Splitting Stochastic Integrators , 2016, SIAM J. Numer. Anal..

[25]  David Cohen,et al.  High order numerical integrators for single integrand SDEs , 2020, ArXiv.

[26]  Tetsuya Misawa,et al.  Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods , 2010 .

[27]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[28]  Jialin Hong,et al.  Structure-preserving numerical methods for stochastic Poisson systems , 2020, Communications in Computational Physics.

[29]  Ryszard Rudnicki,et al.  Long-time behaviour of a stochastic prey–predator model , 2003 .

[30]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[31]  Raffaele D'Ambrosio,et al.  Drift-preserving numerical integrators for stochastic Hamiltonian systems , 2020, Adv. Comput. Math..

[32]  Fernando Casas,et al.  A Concise Introduction to Geometric Numerical Integration , 2016 .

[33]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[34]  Jialin Hong,et al.  Asymptotically-Preserving Large Deviations Principles by Stochastic Symplectic Methods for a Linear Stochastic Oscillator , 2021, SIAM J. Numer. Anal..

[35]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[36]  Anne Kværnø,et al.  Order conditions for stochastic Runge-Kutta methods preserving quadratic invariants of Stratonovich SDEs , 2017, J. Comput. Appl. Math..

[37]  Assyr Abdulle,et al.  High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations , 2012, SIAM J. Sci. Comput..

[38]  Yanzhao Cao,et al.  Numerical methods preserving multiple Hamiltonians for stochastic Poisson systems , 2021, Discrete & Continuous Dynamical Systems - S.

[39]  Ming Liao,et al.  Motion of a Rigid Body under Random Perturbation , 2005 .

[40]  Jialin Hong,et al.  Construction of Symplectic Runge-Kutta Methods for Stochastic Hamiltonian Systems , 2017 .

[41]  Darryl D. Holm,et al.  Stochastic discrete Hamiltonian variational integrators , 2016, BIT Numerical Mathematics.

[42]  Xiaohua Ding,et al.  High-order stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with additive noise , 2019, Appl. Math. Comput..

[43]  S. Ninomiya,et al.  Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing , 2006, math/0605361.

[44]  LIE–TROTTER FORMULA AND POISSON DYNAMICS , 1999 .

[45]  J. Ortega,et al.  Stochastic hamiltonian dynamical systems , 2007, math/0702787.

[46]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[47]  J. M. Sanz-Serna,et al.  Word combinatorics for stochastic differential equations: Splitting integrators , 2018, Communications on Pure & Applied Analysis.

[48]  David Cohen,et al.  Energy-preserving integrators for stochastic Poisson systems , 2014 .

[49]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .