Mobile Query Recommendation via Tensor Function Learning

With the prevalence of mobile search nowadays, the benefits of mobile query recommendation are well recognized, which provide formulated queries sticking to users' search intent. In this paper, we introduce the problem of query recommendation on mobile devices and model the user-location-query relations with a tensor representation. Unlike previous studies based on tensor decomposition, we study this problem via tensor function learning. That is, we learn the tensor function from the side information of users, locations and queries, and then predict users' search intent. We develop an efficient alternating direction method of multipliers (ADMM) scheme to solve the introduced problem. We empirically evaluate our approach based on the mobile query dataset from Bing search engine in the city of Beijing, China, and show that our method can outperform several state-of-the-art approaches.

[1]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[2]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Zhixun Su,et al.  Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation , 2011, NIPS.

[4]  Ling Liu,et al.  Query-URL Bipartite Based Approach to Personalized Query Recommendation , 2008, AAAI.

[5]  James T. Kwok,et al.  Making Large-Scale Nyström Approximation Possible , 2010, ICML.

[6]  Hong Cheng,et al.  Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and Completion , 2014, NIPS.

[7]  Wilfred Ng,et al.  Expert Finding for Question Answering via Graph Regularized Matrix Completion , 2015, IEEE Transactions on Knowledge and Data Engineering.

[8]  Xueqi Cheng,et al.  A structured approach to query recommendation with social annotation data , 2010, CIKM.

[9]  Nicholas I. M. Gould,et al.  SIAM Journal on Optimization , 2012 .

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  James Allan,et al.  Task-aware query recommendation , 2013, SIGIR.

[12]  Xing Xie,et al.  Collaborative Filtering Meets Mobile Recommendation: A User-Centered Approach , 2010, AAAI.

[13]  James Bennett,et al.  The Netflix Prize , 2007 .

[14]  Song Han,et al.  Query recommendation and its usefulness evaluation on mobile search engine , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[15]  M. de Rijke,et al.  Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval , 2013, SIGIR 2013.

[16]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[17]  Tamara G. Kolda,et al.  Scalable Tensor Factorizations with Missing Data , 2010, SDM.

[18]  Xiaoqin Zhang,et al.  Hybrid Singular Value Thresholding for Tensor Completion , 2014, AAAI.

[19]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[21]  Gareth J. F. Jones,et al.  Proceedings of the 19th ACM international conference on Information and knowledge management , 2010, CIKM 2010.

[22]  Yuanyuan Liu,et al.  Generalized Higher-Order Tensor Decomposition via Parallel ADMM , 2014, AAAI.

[23]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[24]  Taiji Suzuki,et al.  Convex Tensor Decomposition via Structured Schatten Norm Regularization , 2013, NIPS.

[25]  Patrick J. Roa Volume 8 , 2001 .

[26]  Feiping Nie,et al.  Low-Rank Tensor Completion with Spatio-Temporal Consistency , 2014, AAAI.

[27]  Luca Becchetti,et al.  An optimization framework for query recommendation , 2010, WSDM '10.