Simulation of Water Particle Kinematics in the Near Surface Zone

Linear Random Wave Theory (LRWT) is frequently used to simulate water particle kinematics at different nodes of an offshore structure from a reference surface elevation record. It is, however, well known that wave kinematics calculated from LRWT suffer from unrealistically large high-frequency components in the vicinity of mean water level. To overcome this deficiency, a common industry practice consists of using linear wave theory in conjunction with empirical techniques, such as the Wheeler or the vertical stretching methods, to provide a more realistic representation of the near-surface water particle kinematics. In this paper, a modified version of LRWT is introduced, which, unlike the standard LRWT, does not lead to unrealistically large high-frequency components in the vicinity of mean water level. The proposed method leads to predicted kinematics in the near surface zone which lie between corresponding values from the Wheeler and the vertical stretching methods, respectively.Copyright © 2009 by ASME