Computing the controllability radius: a semi-definite programming approach

A semi-definite programming (SDP) approach to compute the controllability radius is proposed in this paper. The initial nonconvex optimisation problem is transformed into the minimisation of the smallest eigenvalue of a bivariate real or trigonometric polynomial with matrix coefficients. A sum-of-squares relaxation leads to the SDP formulation. A similar technique is used for the computation of the stabilisability radius. The approach is extended to the computation of the worst-case controllability radius for systems that depend polynomially on a small number of parameters. Experimental results show that the proposed methods compete well with previous ones in a complexity/accuracy trade-off.

[1]  Bruce Reznick,et al.  Sums of squares of real polynomials , 1995 .

[2]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[3]  C. Paige Properties of numerical algorithms related to computing controllability , 1981 .

[4]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[5]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[6]  Ludwig Elsner,et al.  An algorithm for computing the distance to uncontrollability , 1991 .

[7]  Ming Gu,et al.  Fast Methods for Estimating the Distance to Uncontrollability , 2006, SIAM J. Matrix Anal. Appl..

[8]  Paul Van Dooren,et al.  Optimization Problems over Positive Pseudopolynomial Matrices , 2003, SIAM J. Matrix Anal. Appl..

[9]  Michael Neumann,et al.  A global minimum search algorithm for estimating the distance to uncontrollability , 1993 .

[10]  F Rikus Eising,et al.  Between controllable and uncontrollable , 1984 .

[11]  Michael A. Dritschel,et al.  On Factorization of Trigonometric Polynomials , 2004 .

[12]  B. Dumitrescu,et al.  Trigonometric Polynomials Positive on Frequency Domains and Applications to 2-D FIR Filter Design , 2006, IEEE Transactions on Signal Processing.

[13]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[14]  Adrian S. Lewis,et al.  Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..

[15]  Lieven Vandenberghe,et al.  Multidimensional FIR Filter Design Via Trigonometric Sum-of-Squares Optimization , 2007, IEEE Journal of Selected Topics in Signal Processing.

[16]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[17]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .