Computing the controllability radius: a semi-definite programming approach
暂无分享,去创建一个
[1] Bruce Reznick,et al. Sums of squares of real polynomials , 1995 .
[2] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[3] C. Paige. Properties of numerical algorithms related to computing controllability , 1981 .
[4] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[5] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .
[6] Ludwig Elsner,et al. An algorithm for computing the distance to uncontrollability , 1991 .
[7] Ming Gu,et al. Fast Methods for Estimating the Distance to Uncontrollability , 2006, SIAM J. Matrix Anal. Appl..
[8] Paul Van Dooren,et al. Optimization Problems over Positive Pseudopolynomial Matrices , 2003, SIAM J. Matrix Anal. Appl..
[9] Michael Neumann,et al. A global minimum search algorithm for estimating the distance to uncontrollability , 1993 .
[10] F Rikus Eising,et al. Between controllable and uncontrollable , 1984 .
[11] Michael A. Dritschel,et al. On Factorization of Trigonometric Polynomials , 2004 .
[12] B. Dumitrescu,et al. Trigonometric Polynomials Positive on Frequency Domains and Applications to 2-D FIR Filter Design , 2006, IEEE Transactions on Signal Processing.
[13] Carsten W. Scherer,et al. Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..
[14] Adrian S. Lewis,et al. Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..
[15] Lieven Vandenberghe,et al. Multidimensional FIR Filter Design Via Trigonometric Sum-of-Squares Optimization , 2007, IEEE Journal of Selected Topics in Signal Processing.
[16] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[17] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .