Thermodynamics and stability of non-equilibrium steady states in open systems -- incompressible heat conducting viscous fluid subject to a temperature gradient

Thermodynamical arguments are known to be useful in the construction of physically motivated Lyapunov functionals for nonlinear stability analysis of spatially homogeneous equilibrium states in thermodynamically isolated systems. Unfortunately, the limitation to isolated systems is essential, and standard arguments are not applicable even for some very simple thermodynamically open systems. On the other hand, the nonlinear stability of thermodynamically open systems is usually investigated using the so-called energy method. The mathematical quantity that is referred to as the “energy” is, however, in most cases not linked to the energy in the physical sense of the word. Consequently, it would seem that genuine thermo-dynamical concepts are of no use in the nonlinear stability analysis of thermodynamically open systems. We show that this is not the case. In particular, we propose a construction that in the case of a simple heat conduction problem leads to a physically well-motivated Lyapunov type functional, which effectively replaces the artificial Lyapunov functional used in the standard energy method. The proposed construction seems to be general enough to be applied in complex thermomechanical settings.

[1]  J. Ericksen,et al.  Introduction to the thermodynamics of solids , 1991 .

[2]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[3]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[4]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[5]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[6]  J. Málek,et al.  Derivation of Equations for Continuum Mechanics and Thermodynamics of Fluids , 2016 .

[7]  Lorna Logan Richardson Nonlinear stability analyses for variable viscosity and compressible convection problems , 1993 .

[8]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[9]  Jessika Weiss Stability And Transition In Shear Flows , 2016 .

[10]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[11]  Jaroslav Hron,et al.  On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients , 2016 .

[12]  Karel Tuma,et al.  Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid , 2018, Entropy.

[13]  M. Gurtin Thermodynamics and the energy criterion for stability , 1973 .

[14]  Adriano Sciacovelli,et al.  Entropy generation analysis as a design tool - A review , 2015 .

[15]  R. Clausius,et al.  Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .

[16]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[17]  Marco Dressler,et al.  Macroscopic thermodynamics of flowing polymeric liquids , 1999 .

[18]  D. J. Tritton,et al.  The Theory of Hydrodynamic Stability , 1977 .

[19]  Mark Dostal'ik,et al.  On diffusive variants of some classical viscoelastic rate-type models , 2019, Preface: Novel Trends in Rheology VIII.

[20]  K. Rajagopal,et al.  On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis , 2015 .

[21]  E. Feireisl,et al.  Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System , 2011, 1111.3082.

[22]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[23]  J. Ericksen A thermo-kinetic view of elastic stability theory , 1966 .

[24]  Sven-Ake Wegner,et al.  Variations on Barbălat's Lemma , 2014, Am. Math. Mon..

[25]  V. I. I︠U︡dovich The linearization method in hydrodynamical stability theory , 1989 .

[26]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[27]  Songmu Zheng Asymptotic behavior for strong solutions of the Navier–Stokes equations with external forces , 2001 .

[28]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[29]  Marko Wagner,et al.  Introduction To The Thermodynamics Of Solids , 2016 .

[30]  The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I: A Perfect Liquid , 2008 .

[31]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[32]  K. R. Rajagopal,et al.  On thermomechanical restrictions of continua , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[34]  E. Feireisl,et al.  Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.

[35]  J. N. Flavin,et al.  Asymptotic and other properties of a nonlinear diffusion model , 1998 .

[36]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[37]  C. Dafermos The second law of thermodynamics and stability , 1979 .

[38]  Y. Kagei,et al.  Natural Convection with Dissipative Heating , 2000 .

[39]  B. Straughan,et al.  Global stability for convection when the viscosity has a maximum , 2004 .

[40]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[41]  K. Rajagopal,et al.  Derivation of the Variants of the Burgers Model Using a Thermodynamic Approach and Appealing to the Concept of Evolving Natural Configurations , 2018, Fluids.

[42]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[43]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[44]  J. N. Flavin,et al.  Qualitative Estimates For Partial Differential Equations: An Introduction , 1996 .

[45]  J. N. Flavin,et al.  Regular ArticleAsymptotic and Other Properties of a Nonlinear Diffusion Model , 1998 .

[46]  D. Joseph,et al.  Stability of fluid motions. I, II , 1976 .

[47]  E. Suli,et al.  Thermodynamics of viscoelastic rate-type fluids with stress diffusion , 2017, 1706.06277.

[48]  K. Rajagopal,et al.  A thermodynamic frame work for rate type fluid models , 2000 .

[49]  Jaroslav Hron,et al.  On thermodynamics of incompressible viscoelastic rate type fluids with temperature dependent material coefficients , 2016, 1612.01724.

[50]  Sven-Ake Wegner,et al.  Variations on Barbălat's Lemma , 2014 .

[51]  J. Málek,et al.  On compressible Korteweg fluid-like materials , 2010 .

[52]  Robert L. Scott Available Energy and the Second Law Analysis. , 1960 .

[53]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[54]  Miroslav Šilhavý,et al.  The Mechanics and Thermodynamics of Continuous Media , 2002 .

[55]  J. Stein,et al.  Viscoelastic rate type fluids with temperature dependent material parameters – stability of the rest state , 2017, 1701.08966.

[56]  B. D. Coleman On the stability of equilibrium states of general fluids , 1970 .

[57]  Brian Straughan,et al.  The Energy Method, Stability, and Nonlinear Convection , 1991 .

[58]  Pierre Maurice Marie Duhem,et al.  Traité D'Énergétique ou de Thermodynamique Générale , 1913 .

[59]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[60]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[61]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[62]  Camila Flor J. Yagonia,et al.  Thermodynamics and Stability , 2017 .

[63]  James Serrin,et al.  On the stability of viscous fluid motions , 1959 .

[64]  J. Campbell,et al.  Elements of Classical Thermodynamics for Advanced Students of Physics. , 1958 .