Flow and mass transfer modelling of nanofiltration

Abstract A numerical model based on the finite volume formulation to predict laminar flows hydrodynamics and mass transfer of aqueous solutions (570 Sc 200 mm ×30 mm ×2  mm) that simulates the two-dimensional developing flow in the channels of spiral-wound modules. The predictions are validated against experimental data of apparent rejection coefficients and permeate fluxes, exhibiting an excellent agreement. A correlation for the concentration boundary layer thickness, a measure of the concentration polarisation, based on the predicted values of the solute concentration profiles, δ ω h =15.5 l h 0.4 Re −0.4 Sc −0.63 Re p −0.04 [1−186Sc −1.0 Re p −0.21 ] is proposed in the operating condition ranges of 250 Re Re p Sc

[1]  Shoji Kimura,et al.  Development of a New Type of Membrane Osmometer , 1992 .

[2]  Christian Trägårdh,et al.  Computer simulations of mass transfer in the concentration boundary layer over ultrafiltration membranes , 1993 .

[3]  W. Focke,et al.  On the mechanism of transfer enhancement by eddy promoters , 1983 .

[4]  H. Ohya,et al.  Reverse osmotic concentration of aqueous 2-butanone (methyl ethyl ketone), tetrahydrofuran and ethyl acetate solutions. , 1988 .

[5]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[6]  C. M. Tam,et al.  Polysulfone membranes I. performance comparison of commercially available ultrafiltration membranes , 1992 .

[7]  W. Deen Hindered transport of large molecules in liquid‐filled pores , 1987 .

[8]  Thomas K. Sherwood,et al.  Desalination by Reverse Osmosis , 1967 .

[9]  Peter D. Richardson,et al.  Fundamentals of Heat Transfer , 1962 .

[10]  C. A. Smolders,et al.  Mass transfer coefficients in cross-flow ultrafiltration , 1989 .

[11]  A. Tremblay,et al.  Membrane pore characterization—comparison between single and multicomponent solute probe techniques , 1991 .

[12]  Anthony G. Fane,et al.  Optimal channel spacer design for ultrafiltration , 1991 .

[13]  Ken Darcovich,et al.  Turbulent transport in membrane modules by CFD simulation in two dimensions , 1995 .

[14]  Malcolm Dole,et al.  Diffusion in Supersaturated Solutions. II. Glucose Solutions , 1953 .

[15]  S. Nakao,et al.  Transport analysis of reverse osmosis of organic aqueous solutions , 1991 .

[16]  O. Hassager,et al.  Simulation of transport phenomena in ultrafiltration , 1993 .

[17]  R. I. Kermode,et al.  Prediction of concentration polarization and flux behavior in reverse osmosis by numerical analysis , 1990 .

[18]  P. Kerkhof,et al.  The influence of thermodynamic activity on the solute rejection in multicomponent systems , 1997 .

[19]  Dianne E. Wiley,et al.  Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration☆ , 1994 .

[20]  T. Matsuura,et al.  Reverse osmosis separations of polyethylene glycols in dilute aqueous solutions using porous cellulose acetate membranes , 1979 .

[21]  P. Eriksson Water and salt transport through two types of polyamide composite membranes , 1988 .

[22]  Viriato Semiao,et al.  Numerical modelling of mass transfer in slits with semi‐permeable membrane walls , 2000 .

[23]  Vítor Geraldes,et al.  Nanofiltration mass transfer at the entrance region of a slit laminar flow , 1998 .

[24]  M. C. Porter Concentration Polarization with Membrane Ultrafiltration , 1972 .