Barremian–Cenomanian palaeotemperatures for Australian seas based on new oxygen-isotope data from belemnite rostra

[1]  G. Price,et al.  PALEOENVIRONMENT AND PALEOECOLOGY INFERRED FROM OXYGEN AND CARBON ISOTOPES OF SUBTROPICAL MOLLUSKS FROM THE LATE CRETACEOUS (CENOMANIAN) OF BATHURST ISLAND, AUSTRALIA , 2012 .

[2]  K. Collerson,et al.  Strontium–isotope stratigraphy of the Lower Cretaceous of Australia , 2012 .

[3]  A. Cook Cretaceous Faunas and Events, Northern Eromanga Basin, Queensland , 2012 .

[4]  T. Schmid,et al.  Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater , 2011 .

[5]  J. Damsté,et al.  Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean , 2011 .

[6]  P. Bown,et al.  High sea-surface temperatures during the Early Cretaceous Epoch , 2011 .

[7]  Stefan Schouten,et al.  TEX86 and stable δ18O paleothermometry of early Cretaceous sediments: Implications for belemnite ecology and paleotemperature proxy application , 2010 .

[8]  G. Price,et al.  Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: Transient glacial temperatures during the Cretaceous greenhouse , 2010 .

[9]  J. Mutterlose,et al.  The role of biogeography and ecology on the isotope signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies , 2009 .

[10]  M. Joachimski,et al.  Stable isotopes, elemental distribution, and growth rings of belemnopsid belemnite rostra: Proxies for belemnite life habitat , 2009 .

[11]  R. Twitchett,et al.  Isotopic analysis of the life history of the enigmatic squid Spirula spirula, with implications for studies of fossil cephalopods , 2009 .

[12]  S. Grimes,et al.  Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: Implications for upper-ocean water temperature estimates , 2009 .

[13]  D. Pollard,et al.  Simulation of modern and middle Cretaceous marine δ18O with an ocean‐atmosphere general circulation model , 2008 .

[14]  A. Dutton,et al.  HIGH-RESOLUTION STABLE ISOTOPE PROFILES OF A DIMITOBELID BELEMNITE: IMPLICATIONS FOR PALEODEPTH HABITAT AND LATE MAASTRICHTIAN CLIMATE SEASONALITY , 2007 .

[15]  T. Williamson Systematics and biostratigraphy of Australian early cretaceous belemnites with contributions to the timescale and palaeoenvironmental assessment of the early Australian early cretaceous system derived from stable isotope proxies , 2006 .

[16]  A. Oosting Palaeoenvironmental and climatic changes in Australia during the early Cretaceous , 2004 .

[17]  R. A. Henderson A Mid-Cretaceous Association of Shell Beds and Organic-rich Shale: Bivalve Exploitation of a Nutrient-Rich, Anoxic Sea-floor Environment , 2004 .

[18]  S. Robles,et al.  Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain , 2004 .

[19]  H. Wierzbowski Carbon and oxygen isotope composition of Oxfordian–Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas , 2004 .

[20]  P. Rawson,et al.  Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, δ13C, δ18O, Na, Sr, Mg), and palaeo-oceanography , 2004 .

[21]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[22]  R. Norris,et al.  Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511 , 2003 .

[23]  S. Voigt,et al.  Cenomanian palaeotemperatures derived from the oxygen isotopic composition of brachiopods and belemnites: evaluation of Cretaceous palaeotemperature proxies , 2003 .

[24]  D. Schrag,et al.  Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes , 2003 .

[25]  D. Haig,et al.  GSWA Edaggee 1 well completion report (interpretative), Gasgoyne Platform, Southern Carnarvon Basin, Western Australia , 2003 .

[26]  R. Norris,et al.  Extreme Polar Warmth during the Cretaceous Greenhouse? the Paradox of the Late Turonian d18O Record at DSDP Site 511 , 2003 .

[27]  M. Arthur,et al.  Water mass characteristics in the Cenomanian US Western Interior seaway as indicated by stable isotopes of calcareous organisms , 2002 .

[28]  R. Leckie,et al.  Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous , 2002 .

[29]  G. Price,et al.  Strontium-isotope stratigraphy and oxygen- and carbon-isotope variation during the Middle Jurassic–Early Cretaceous of the Falkland Plateau, South Atlantic , 2002 .

[30]  P. Vickers-Rich,et al.  Polar Dinosaurs , 2002, Science.

[31]  W. Kennedy,et al.  Occurrence of the ammonite Goodhallites goodhalli (J. Sowerby) in the Eromanga Basin, Queensland: an index species for the late Albian (Cretaceous) , 2002 .

[32]  D. Haig,et al.  Barremian foraminifera from the Muderong Shale, oldest marine sequence in the Cretaceous of the Southern Carnarvon Basin, Western Australia , 2001 .

[33]  C. Powell,et al.  An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic , 2001 .

[34]  S. Bryan,et al.  The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province , 2000 .

[35]  D. Haig,et al.  Biogeographical observations on the Cretaceous biota of Australasia , 2000 .

[36]  C. Osburn,et al.  The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, Northeastern Mexico , 1999 .

[37]  H. Jenkyns,et al.  New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere , 1999 .

[38]  D. Haig,et al.  Bathymetric change during Early Cretaceous intracratonic marine transgression across the northeastern Eromanga Basin, Australia , 1999 .

[39]  V. Bettencourt,et al.  Carbon- and oxygen-isotope composition of the cuttlebone of Sepia officinalis: a tool for predicting ecological information? , 1999 .

[40]  R. Gregory,et al.  Lower Cretaceous (Aptian-Albian) secular changes in the oxygen and carbon isotope record from high paleolatitude, fluvial sediments, Southeast Australia: Comparisons to the marine record , 1999 .

[41]  J. Thurow,et al.  Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys , 1997 .

[42]  A. Bush Numerical Simulation of the Cretaceous Tethys Circumglobal Current , 1997, Science.

[43]  D. Hodell,et al.  Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients , 1995 .

[44]  P. Doyle,et al.  Cool Cretaceous climates: new data from the Albian of Western Australia , 1995, Journal of the Geological Society.

[45]  L. Frakes,et al.  Early Cretaceous Ice Rafting and Climate Zonation in Australia , 1995 .

[46]  D. Pirrie,et al.  High latitude palaeotemperature variation: New data from the Thithonian to Eocene of James Ross Island, Antarctica , 1994 .

[47]  R. Hocking,et al.  An Atlas of Neoproterozoic and Phanerozoic Basins of Western Australia , 1994 .

[48]  N. Landman,et al.  Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens , 1994, Paleobiology.

[49]  D. Haig,et al.  A late early Albian marine transgressive pulse over northeastern Australia, precursor to epeiric basin anoxia: foraminiferal evidence , 1993 .

[50]  T. Bralower 34. STABLE ISOTOPIC, ASSEMBLAGE, AND PALEOENVIRONMENTAL INVESTIGATION S OF JUVENILE-OCEAN SEDIMENTS RECOVERED ON LEG 122, WOMBAT PLATEAU, NORTHWEST AUSTRALIA1 , 1992 .

[51]  Kamiński,et al.  Early Cretaceous biogeographic and oceanographic synthesis of Leg 123 (off Northwestern Australia) , 1992 .

[52]  C. Powell,et al.  Review of seafloor spreading around Australia. I. synthesis of the patterns of spreading , 1991 .

[53]  D. Pirrie,et al.  Diagenesis of Inoceramus and late Cretaceous paleoenvironmental geochemistry: a case study from James Ross Island, Antarctica , 1990 .

[54]  T. Rich,et al.  Oxygen isotopic composition of carbonate concretions from the lower Cretaceous of Victoria, Australia: implications for the evolution of meteoric waters on the Australian continent in a paleopolar environment , 1989 .

[55]  H. Weissert C-Isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the early cretaceous , 1989 .

[56]  J. D. Hudson,et al.  Ocean temperatures and isotopic compositions through time , 1989, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[57]  B. Haq,et al.  Mesozoic and Cenozoic Chronostratigraphy and Cycles of Sea-Level Change , 1989 .

[58]  L. Frakes,et al.  A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous , 1988, Nature.

[59]  E. Kemper Das Klima der Kreide-Zeit , 1987 .

[60]  R. A. Day,et al.  AUSTRALIAN CRETACEOUS SHORELINES, STAGE BY STAGE , 1987 .

[61]  A. Hallam A review of Mesozoic climates , 1985, Journal of the Geological Society.

[62]  T. Bralower,et al.  Low productivity and slow deep-water circulation in mid-Cretaceous oceans , 1984 .

[63]  E. Barron A WARM EQUABLE CRETACEOUS: THE NATURE OF THE PROBLEM , 1983 .

[64]  G. E. Williams,et al.  Southern polar forests: The Early Cretaceous floras of Victoria and their palaeoclimatic significance , 1982 .

[65]  K. Campbell,et al.  FOSSILIFEROUS LOWER DEVONIAN BOULDERS IN CRETACEOUS SEDIMENTS OF THE GREAT AUSTRALIAN BASIN , 1980 .

[66]  J. Drever,et al.  Importance of alteration of volcanic material in the sediments of deep sea drilling site 323: chemistry, 18O16O and 87Sr86Sr☆ , 1979 .

[67]  E. Kauffman,et al.  The great transgressions of the Late Cretaceous , 1979, Journal of the Geological Society.

[68]  O. G. Epshteyn Mesozoic-Cenozoic climates of Northern Asia and glacial-marine deposits , 1978 .

[69]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .

[70]  R. Clayton,et al.  Oxygen isotope studies on Jurassic and Cretaceous belemnites from New Zealand and their biogeographic significance , 1971 .

[71]  R. Rye,et al.  Distribution of Oxygen and Carbon Isotopes in Fossils of Late Cretaceous Age, Western Interior Region of North America , 1969 .

[72]  F. Dorman Some Australian Oxygen Isotope Temperatures and a Theory for a 30-Million-Year World-Temperature Cycle , 1968, The Journal of Geology.

[73]  R. Bowen PALEOTEMPERATURE ANALYSES OF MESOZOIC BELEMNOIDEA FROM AUSTRALIA AND NEW GUINEA , 1961 .

[74]  S. Epstein,et al.  Paleotemperatures of the Post-Aptian Cretaceous as Determined by the Oxygen Isotope Method , 1954, The Journal of Geology.

[75]  H. Urey,et al.  MEASUREMENT OF PALEOTEMPERATURES AND TEMPERATURES OF THE UPPER CRETACEOUS OF ENGLAND, DENMARK, AND THE SOUTHEASTERN UNITED STATES , 1951 .