A Generic C++ Library for Multilevel Quasi-Monte Carlo
暂无分享,去创建一个
[1] Jonas Sukys,et al. Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers , 2011, PPAM.
[2] Christoph Schwab,et al. Computational Higher Order Quasi-Monte Carlo Integration , 2014, MCQMC.
[3] Michael B. Giles,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[4] P. Bickel,et al. Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.
[5] Josef Dick,et al. Higher Order Quasi-Monte Carlo Integration for Holomorphic, Parametric Operator Equations , 2014, SIAM/ASA J. Uncertain. Quantification.
[6] Josef Dick,et al. Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..
[7] Albert Cohen,et al. Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .
[8] G. Leobacher,et al. Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .
[9] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[10] F. Pillichshammer,et al. Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .
[11] Michael B. Giles. Multilevel Monte Carlo methods , 2015, Acta Numerica.
[12] A. Beskos,et al. Multilevel sequential Monte Carlo samplers , 2015, 1503.07259.
[13] C. Schwab,et al. Higher Order Quasi Monte-Carlo Integration in Uncertainty Quantification , 2014, 1409.7970.
[14] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[15] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[16] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[17] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[18] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[19] Torsten Hoefler,et al. Scientific Benchmarking of Parallel Computing Systems Twelve ways to tell the masses when reporting performance results , 2017 .
[20] Christoph Schwab,et al. Binned Multilevel Monte Carlo for Bayesian Inverse Problems with Large Data , 2016 .
[21] W. Schachermayer,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[22] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[23] J. Sukys. Adaptive Load Balancing for Massively Parallel Multi-Level Monte Carlo Solvers , 2013, PPAM.
[24] Andrea Barth,et al. Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2012 .
[25] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[26] Josef Dick,et al. Higher order Quasi-Monte Carlo integration for Bayesian Estimation , 2016, 1602.07363.
[27] T. J. Dodwell,et al. A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.
[28] Frances Y. Kuo,et al. Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..
[29] Dirk Nuyens,et al. Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .
[30] C. Schwab,et al. Sparsity in Bayesian inversion of parametric operator equations , 2013 .
[31] Desmond J. Higham,et al. Multilevel Monte Carlo for Continuous Time Markov Chains, with Applications in Biochemical Kinetics , 2011, Multiscale Model. Simul..
[32] P. Arbenz,et al. Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation , 2014, 1401.3891.
[33] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[34] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[35] Christiane Lemieux,et al. Using Quasi–Monte Carlo in Practice , 2009 .
[36] Frances Y. Kuo,et al. Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.
[37] Peter Arbenz,et al. Intrinsic fault tolerance of multilevel Monte Carlo methods , 2015, J. Parallel Distributed Comput..
[38] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[39] I. T. Jolliffe,et al. Springer series in statistics , 1986 .
[40] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.
[41] James A. Nichols,et al. Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..
[42] Josef Dick,et al. Multi-level higher order QMC Galerkin discretization for affine parametric operator equations , 2014, 1406.4432.