Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study

This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace–Fourier transform, the vibroacoustic problem may be transformed into the frequency–wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.

[1]  Guirong Liu,et al.  Elastic waves in anisotropic laminates , 2001 .

[2]  Christian Soize,et al.  A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation , 2008 .

[3]  Tommi Kärkkäinen,et al.  Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. , 2002, Physiological measurement.

[4]  Maryline Talmant,et al.  Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. , 2004, The Journal of the Acoustical Society of America.

[5]  Salah Naili,et al.  A theoretical analysis in the time-domain of wave reflection on a bone plate , 2006 .

[6]  P. Moilanen,et al.  Ultrasonic guided waves in bone , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  H K Genant,et al.  A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. , 2000, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[8]  D. Roy Mahapatra,et al.  Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures , 2007 .

[9]  K. Y. Lam,et al.  Transient waves in plates of functionally graded materials , 2001 .

[10]  José M. Carcione,et al.  Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media , 2011 .

[11]  R. Lakes,et al.  Ultrasonic wave propagation and attenuation in wet bone. , 1986, Journal of biomedical engineering.

[12]  X Edward Guo,et al.  The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. , 2004, Journal of biomechanics.

[13]  M. Sasso,et al.  Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. , 2007, Ultrasound in medicine & biology.

[14]  Christian Soize,et al.  Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: model and experiments. , 2009, The Journal of the Acoustical Society of America.

[15]  Christian Soize,et al.  Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission. , 2009, The Journal of the Acoustical Society of America.

[16]  Alessandro Marzani,et al.  Time–transient response for ultrasonic guided waves propagating in damped cylinders , 2008 .

[17]  E Vicaut,et al.  Distribution of Intracortical Porosity in Human Midfemoral Cortex by Age and Gender , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[18]  John A. Ekaterinaris,et al.  Effective Computational Methods for Wave Propagation , 2008 .

[19]  K. Y. Lam,et al.  TRANSIENT WAVES IN A FUNCTIONALLY GRADED CYLINDER , 2001 .

[20]  Salah Naili,et al.  Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization. , 2010, The Journal of the Acoustical Society of America.

[21]  Marek Krawczuk,et al.  Spectral Finite Element Method , 2012 .

[22]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[23]  Olivier Poncelet,et al.  Analysis of the dispersion spectrum of fluid-loaded anisotropic plates: leaky-wave branches , 2006 .

[24]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[25]  R. Heaney,et al.  Cortical ultrasound velocity as an indicator of bone status , 2005, Osteoporosis International.

[26]  Dimitrios I Fotiadis,et al.  Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones. , 2007, The Journal of the Acoustical Society of America.

[27]  Maryline Talmant,et al.  Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. , 2007, The Journal of the Acoustical Society of America.

[28]  E. Bossy,et al.  Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. , 2002, The Journal of the Acoustical Society of America.

[29]  H. Antes,et al.  Application of ‘Operational Quadrature Methods’ in Time Domain Boundary Element Methods , 1997 .

[30]  Propagation d'ondes élastiques au sein d'un guide d'ondes élastiques anisotrope à gradient unidirectionnel sous chargement fluide , 2008 .

[31]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[32]  G Van der Perre,et al.  Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation. , 1996, Journal of biomechanics.

[33]  C. Njeh,et al.  Does Combining the Results from Multiple Bone Sites Measured by a New Quantitative Ultrasound Device Improve Discrimination of Hip Fracture? , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[34]  Dieter Weichert,et al.  Higher order asymptotic homogenization and wave propagation in periodic composite materials , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  C M Langton,et al.  A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone. , 1990, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[36]  F Peyrin,et al.  Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. , 2010, Journal of biomechanics.

[37]  C. Soize,et al.  Modélisation probabiliste d'une expérience ultrasonore : calcul de la dispersion sur les mesures de célérité , 2005 .

[38]  Abdullah Eroglu,et al.  Wave propagation in layered anisotropic medium , 2010, Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation.

[39]  John G Clement,et al.  Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences , 2005, Journal of anatomy.

[40]  Robert S. Leiken,et al.  A User’s Guide , 2011 .

[41]  Christian Soize,et al.  Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission. , 2010, The Journal of the Acoustical Society of America.

[42]  Christian Soize,et al.  Elastoacoustic model with uncertain mechanical properties for ultrasonic wave velocity prediction: application to cortical bone evaluation. , 2006, The Journal of the Acoustical Society of America.

[43]  Impact of a multi-frequency sequence of measurements on first arriving signal velocity on a bone plate model , 2009, 2009 IEEE International Ultrasonics Symposium.

[44]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[45]  M. Sasso,et al.  Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. , 2008, Journal of biomechanics.