A New Single-Band Pixel-by-Pixel Atmospheric Correction Method to Improve the Accuracy in Remote Sensing Estimates of LST. Application to Landsat 7-ETM+

Monitoring Land Surface Temperature (LST) from satellite remote sensing requires an accurate correction of the atmospheric effects. Although thermal remote sensing techniques have advanced significantly over the past few decades, to date, single-band pixel-by-pixel atmospheric correction of full thermal images is unsolved. In this work, we introduce a new Single-Band Atmospheric Correction (SBAC) tool that provides pixel-by-pixel atmospheric correction parameters regardless of the pixel size. The SBAC tool uses National Centers of Environmental Prediction (NCEP) profiles as inputs and, as a novelty, it also accounts for pixel elevation through a Digital Elevation Model (DEM). Application of SBAC to 19 Landsat 7-ETM+ scenes shows the potential of the proposed pixel-by-pixel atmospheric correction to capture terrain orography or atmospheric variability within the scene. LST estimation yields negligible bias and an RMSE of ±1.6 K for the full dataset. The Landsat Atmospheric Correction Tool (ACT) is also considered for comparison. SBAC-ACT LST deviations are analyzed in terms of distance to the image center, surface elevation, and spatial distribution of the atmospheric water content. Differences within 3 K are observed. These results give us the first insight of the potential of SBAC for the operational pixel-by-pixel atmospheric correction of full thermal images. The SBAC tool is expected to help users of satellite single-channel thermal sensors to improve their LST estimates due to its simplicity and robustness.

[1]  Alan R. Gillespie,et al.  Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1996, Optics & Photonics.

[2]  John R. Schott,et al.  Landsat TM and ETM+ thermal band calibration , 2003, SPIE Optics + Photonics.

[3]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[4]  J. A. Voogta,et al.  Thermal remote sensing of urban climates , 2003 .

[5]  R. López-Urrea,et al.  Evapotranspiration and crop coefficients from lysimeter measurements of mature 'Tempranillo' wine grapes , 2012 .

[6]  John R. Schott,et al.  Validation of a web-based atmospheric correction tool for single thermal band instruments , 2005, SPIE Optics + Photonics.

[7]  Diego G. Miralles,et al.  Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation , 2014 .

[8]  Vicente Caselles,et al.  Test of the MODIS Land Surface Temperature and Emissivity Separation Algorithm With Ground Measurements Over a Rice Paddy , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[9]  G. Hulley,et al.  12-17 MODIS MOD 21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document , 2013 .

[10]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[11]  A. Chehbouni,et al.  Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices , 2006 .

[12]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[13]  José A. Sobrino,et al.  On the atmospheric dependence of the split-window equation for land surface temperature , 1994 .

[14]  Qihao Weng Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends , 2009 .

[15]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[16]  V. Caselles,et al.  Modeling evapotranspiration in a spring wheat from thermal radiometry: crop coefficients and E/T partitioning , 2015, Irrigation Science.

[17]  Z. Wan New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products , 2008 .

[18]  Z. Wan MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD) , 1999 .

[19]  V. Caselles,et al.  A split‐window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison , 1997 .

[20]  G. Asrar,et al.  Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat1 , 1984 .

[21]  S. G. Pandalai,et al.  Validation of the vegetation cover method for land surface emissivity estimation. , 2005 .

[22]  J. Dozier,et al.  Land-surface temperature measurement from space: physical principles and inverse modeling , 1989 .

[23]  V. Caselles,et al.  Mapping land surface emissivity from NDVI: Application to European, African, and South American areas , 1996 .

[24]  R. Richter,et al.  Bandpass-resampling effects for the retrieval of surface emissivity. , 2002, Applied optics.

[25]  Olivier Hagolle,et al.  A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data , 2016, Remote. Sens..

[26]  R. López-Urrea,et al.  Testing evapotranspiration equations using lysimeter observations in a semiarid climate , 2006 .

[27]  Julia A. Barsi,et al.  An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[28]  Hua Li,et al.  Evaluation of the NCEP and MODIS Atmospheric Products for Single Channel Land Surface Temperature Retrieval With Ground Measurements: A Case Study of HJ-1B IRS Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Paul E. Lewis,et al.  MODTRAN5: 2006 update , 2006, SPIE Defense + Commercial Sensing.

[30]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[31]  J. C. Price,et al.  Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer , 1984 .

[32]  Maria Mira,et al.  Evaluation of Different Methods to Retrieve the Hemispherical Downwelling Irradiance in the Thermal Infrared Region for Field Measurements , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Bo-Hui Tang,et al.  Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product , 2019 .

[34]  Andrew J. L. Harris,et al.  Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade? , 2013 .

[35]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[36]  Lee Chapman,et al.  Remote sensing land surface temperature for meteorology and climatology: a review , 2011 .

[37]  William P. Kustas,et al.  Estimating energy balance fluxes above a boreal forest from radiometric temperature observations , 2009 .

[38]  Jeffrey L. Privette,et al.  Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[39]  V. Caselles,et al.  Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data , 2012 .

[40]  Julia A. Barsi,et al.  Landsat TM and ETM+ thermal band calibration , 2003, SPIE Optics + Photonics.

[41]  E. Valor,et al.  Evaluation of the S-NPP VIIRS land surface temperature product using ground data acquired by an autonomous system at a rice paddy , 2018 .

[42]  Michael Rast,et al.  The DAISEX campaigns in support of a future land-surface-processes mission , 2001 .

[43]  Jie Cheng,et al.  Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor - Application to Landsat 8 TIRS10 Data , 2018, Remote. Sens..

[44]  Paul E. Lewis,et al.  Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XII : 17-20 April 2006, Kissimmee, Florida, USA , 2006 .

[45]  Joan M. Galve,et al.  Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data , 2011 .

[46]  Maria Mira,et al.  Thermal Infrared Emissivity Dependence on Soil Moisture in Field Conditions , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[47]  R. López-Urrea,et al.  Determining water use of sorghum from two-source energy balance and radiometric temperatures , 2011 .

[48]  Antonio J. Plaza,et al.  Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Isabel F. Trigo,et al.  An assessment of remotely sensed land surface temperature , 2008 .

[50]  José González-Piqueras,et al.  Water use of spring wheat to raise water productivity , 2009 .

[51]  Martha C. Anderson,et al.  Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources , 2012 .

[52]  Eva Rubio,et al.  Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry , 2014 .

[53]  Enric Valor,et al.  An Atmospheric Radiosounding Database for Generating Land Surface Temperature Algorithms , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Vicente Caselles,et al.  Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction With Ground-Based Measurements , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Fran Li,et al.  Surface temperature and emissivity at various scales: Definition, measurement and related problems , 1995 .

[56]  Joan M. Galve,et al.  Temperature and emissivity separation from ASTER data for low spectral contrast surfaces , 2007 .