Broadband on-chip photonic spin Hall element via inverse design

The photonic spin Hall effect plays an important role in photonic information technologies, especially in on-chip spin Hall devices. However, conventional devices suffer from low efficiency or narrow bandwidth, which prevents their practical application. Here, we introduce a spin Hall device using inverse design to achieve both high efficiency and broadband. Spin-dependent light separation is enabled by a 2.4 μm circular device with 100 nm pixels. The photonic spin Hall element is fabricated on a silicon-on-insulator wafer compatible with a standard integrated photonic circuit. The spin light is detected and emitted with an efficiency of up to 22% and 35%, respectively, over a 200 nm bandwidth at optical wavelength.

[1]  Shuangchun Wen,et al.  Recent advances in the spin Hall effect of light , 2017, Reports on progress in physics. Physical Society.

[2]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[3]  Wu,et al.  Manifestations of Berry's topological phase for the photon. , 1986, Physical review letters.

[4]  F. J. Rodríguez-Fortuño,et al.  Resolving Light Handedness with an on-Chip Silicon Microdisk , 2014 .

[5]  F. J. Rodríguez-Fortuño,et al.  Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna , 2014, 1510.01530.

[6]  Zhuo Xing,et al.  Revealing the spin optics in conic-shaped metasurfaces , 2017 .

[7]  Xiaobo Yin,et al.  Radial spin Hall effect of light , 2016 .

[8]  Hong Wang,et al.  Ultra-broadband on-chip twisted light emitter for optical communications , 2018, Light: Science & Applications.

[9]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[10]  Xing Zhu,et al.  Revealing the spin optics in conic-shaped metasurfaces , 2016 .

[11]  Luping Du,et al.  Broadband chirality-coded meta-aperture for photon-spin resolving , 2015, Nature Communications.

[12]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[13]  Xing Zhu,et al.  Enhanced optical performance of multifocal metalens with conic shapes , 2017, Light: Science & Applications.

[14]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[15]  Zhen Tian,et al.  Polarization‐controlled surface plasmon holography , 2017 .

[16]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[17]  G. Bartal,et al.  Metafocusing by a Metaspiral Plasmonic Lens. , 2015, Nano letters.

[18]  Lorenzo Marrucci,et al.  Spin–orbit photonics , 2015, Nature Photonics.

[19]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[20]  Shuangchun Wen,et al.  Photonic spin Hall effect in metasurfaces: a brief review , 2017 .

[21]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[22]  K. Bliokh,et al.  Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. , 2006, Physical review letters.

[23]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[24]  Liberman,et al.  Optical Magnus effect. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Erez Hasman,et al.  Spin-controlled plasmonics via optical Rashba effect , 2013 .

[26]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[27]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[28]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[29]  Shuangchun Wen,et al.  Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence , 2015, Light: Science & Applications.

[30]  B. Shen,et al.  An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint , 2015, Nature Photonics.

[31]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[32]  Shuichi Murakami,et al.  Hall effect of light. , 2004, Physical review letters.

[33]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer , 2017, 1709.08809.

[34]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[35]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[36]  M. Pu,et al.  Broadband spin Hall effect of light in single nanoapertures , 2017, Light: Science & Applications.

[37]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[38]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[39]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[40]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[41]  E. Hasman,et al.  Rashba-type plasmonic metasurface. , 2013, Optics letters.

[42]  K. Bliokh,et al.  Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  C. Qiu,et al.  Advances in Full Control of Electromagnetic Waves with Metasurfaces , 2016 .