Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes

[1]  J. Boonstra,et al.  Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria , 1977, Microbial Ecology.

[2]  J. Kuenen Colourless sulfur bacteria and their role in the sulfur cycle , 1975, Plant and Soil.

[3]  H. G. Trüper,et al.  Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii , 2005, Antonie van Leeuwenhoek.

[4]  J. G. Kuenen,et al.  Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria , 2000, Antonie van Leeuwenhoek.

[5]  N. Pfennig,et al.  Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien , 1966, Archiv für Mikrobiologie.

[6]  J. Kuenen,et al.  The use of natural bacterial populations for the treatment of sulphur-containing wastewater , 2004, Biodegradation.

[7]  J. G. Kuenen,et al.  Reactivity versus flexibility in thiobacilli , 2004, Antonie van Leeuwenhoek.

[8]  G. Cannon,et al.  Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat , 2004, Archives of Microbiology.

[9]  S. D. de Vries,et al.  Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates , 2004, Archives of Microbiology.

[10]  Kenneth H Nealson,et al.  Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). , 2002, International journal of systematic and evolutionary microbiology.

[11]  J. G. Kuenen,et al.  Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes. , 2002, International journal of systematic and evolutionary microbiology.

[12]  M. Wagner,et al.  Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes , 2001, Archives of Microbiology.

[13]  F. Rainey,et al.  Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic , 2001, International journal of systematic and evolutionary microbiology.

[14]  J. G. Kuenen,et al.  Microbial Thiocyanate Utilization under Highly Alkaline Conditions , 2001, Applied and Environmental Microbiology.

[15]  M. Jetten,et al.  Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD , 2001, Archives of Microbiology.

[16]  T. Zhilina,et al.  The alkaliphilic microbial community and its functional diversity , 1999 .

[17]  M. Jetten,et al.  Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. , 1998, Archives of Microbiology.

[18]  Gerald G. Owenson,et al.  Microbial diversity of soda lakes , 1998, Extremophiles.

[19]  C. Friedrich Physiology and genetics of sulfur-oxidizing bacteria. , 1998, Advances in microbial physiology.

[20]  T. A. Krulwich,et al.  Energetics of alkaliphilic Bacillus species: physiology and molecules. , 1998, Advances in microbial physiology.

[21]  T. A. Krulwich,et al.  Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH , 1994, Journal of bacteriology.

[22]  L. Simándi Oxidation of Sulfur Compounds , 1992 .

[23]  J. Pronk,et al.  Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. , 1990 .

[24]  A. Kaplan,et al.  Involvement of a Primary Electrogenic Pump in the Mechanism for HCO(3) Uptake by the Cyanobacterium Anabaena variabilis. , 1982, Plant physiology.

[25]  J. Kuenen,et al.  SELECTIVE ENRICHMENT OF FACULTATIVELY CHEMOLITHOTROPHIC THIOBACILLI AND RELATED ORGANISMS IN CONTINUOUS CULTURE , 1980 .

[26]  A. Miller,et al.  Evidence for HCO(3) Transport by the Blue-Green Alga (Cyanobacterium) Coccochloris peniocystis. , 1980, Plant physiology.

[27]  D. Kelly,et al.  Competition in the Chemostat between an Obligately and a Facultatively Chemolithotrophic Thiobacillus , 1979 .

[28]  J. Gijs Kuenen Colourless sulfur bacteria and their role in the sulfur cycle , 1975 .

[29]  D. P. Kelly,et al.  Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate , 1969 .

[30]  B. Sörbo A colorimetric method for the determination of thiosulfate. , 1957, Biochimica et biophysica acta.