Optimal Fusion Reduced-Order Kalman Filters Weighted by Scalars for Stochastic Singular Systems

Based on the optimal fusion algorithm weighted by scalars in the linear minimum variance sense, a distributed optimal fusion reduced-order Kalman filter with scalar weights is presented for discrete-time stochastic singular systems with multiple sensors and correlated noises. It has higher accuracy than any local filter does. Compared with the distributed fusion filter weighted by matrices, it has lower accuracy but has reduced computational burden. Computation formula of cross-covariance matrix of the filtering errors between any two sensors is given. An example with three sensors shows the effectiveness

[1]  N. A. Carlson Federated square root filter for decentralized parallel processors , 1990 .

[2]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[3]  K. H. Kim,et al.  Development of track to track fusion algorithms , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[4]  Shu-li Sun,et al.  Multi-sensor optimal information fusion Kalman filters with applications , 2004 .

[5]  A. Willsky,et al.  Kalman filtering and Riccati equations for descriptor systems , 1992 .

[6]  J. O'Reilly,et al.  Observers for descriptor systems , 1989 .

[7]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Y. Bar-Shalom On the track-to-track correlation problem , 1981 .

[9]  Shuli Sun,et al.  Multi-sensor optimal information fusion Kalman filter for discrete multichannel ARMA signals , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[10]  Shu-Li Sun,et al.  Multisensor optimal information fusion input white noise deconvolution estimators , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[11]  Shu-Li Sun Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor , 2004, Autom..

[12]  Zi-Li Deng,et al.  Descriptor Kalman estimators , 1999, Int. J. Syst. Sci..

[13]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[14]  Liyi Dai,et al.  State Estimation Schemes for Singular Systems , 1987 .

[15]  Thiagalingam Kirubarajan,et al.  Performance limits of track-to-track fusion versus centralized estimation: theory and application [sensor fusion] , 2003 .

[16]  Sumit Roy,et al.  Decentralized structures for parallel Kalman filtering , 1988 .

[17]  Mohamed Darouach,et al.  State estimation of stochastic singular linear systems , 1993 .

[18]  Chongzhao Han,et al.  Optimal Linear Estimation Fusion — Part I : Unified Fusion Rules , 2001 .

[19]  Tian-You Chai,et al.  A Unified Approach to Optimal State Estimation for Stochastic Singular Systems , 1998, Autom..