CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering

[1]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[2]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[3]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[4]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[5]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[6]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[7]  Moon-Soo Kim,et al.  Quantitative analysis of TALE–DNA interactions suggests polarity effects , 2013, Nucleic acids research.

[8]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[9]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[10]  J. Keith Joung,et al.  Robust, synergistic regulation of human gene expression using TALE activators , 2013, Nature Methods.

[11]  Farshid Guilak,et al.  Synergistic and tunable human gene activation by combinations of synthetic transcription factors , 2013, Nature Methods.

[12]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[13]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[14]  Jens Boch,et al.  TAL effector RVD specificities and efficiencies , 2012, Nature Biotechnology.

[15]  Joseph B Hiatt,et al.  Massively parallel functional dissection of mammalian enhancers in vivo , 2012, Nature Biotechnology.

[16]  Neville E Sanjana,et al.  A transcription activator-like effector toolbox for genome engineering , 2012, Nature Protocols.

[17]  L. Symington,et al.  Double-strand break end resection and repair pathway choice. , 2011, Annual review of genetics.

[18]  R. Barrangou,et al.  CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. , 2011, Annual review of genetics.

[19]  Jeffrey C. Miller,et al.  An unbiased genome-wide analysis of zinc-finger nuclease specificity , 2011, Nature Biotechnology.

[20]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[21]  David R. Liu,et al.  Revealing Off-Target Cleavage Specificities of Zinc Finger Nucleases by In Vitro Selection , 2011, Nature Methods.

[22]  David J. Rawlings,et al.  Tracking genome engineering outcome at individual DNA breakpoints , 2011, Nature Methods.

[23]  G. Church,et al.  Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. , 2011, Nature biotechnology.

[24]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[25]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[26]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[27]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[28]  T. Graf Faculty Opinions recommendation of Induction of pluripotent stem cells from adult human fibroblasts by defined factors. , 2007 .

[29]  Dana Carroll,et al.  Gene targeting using zinc finger nucleases , 2005, Nature Biotechnology.

[30]  Robert H. Singer,et al.  Single mRNA Molecules Demonstrate Probabilistic Movement in Living Mammalian Cells , 2003, Current Biology.

[31]  Jeffry D Sander,et al.  FLAsH assembly of TALeNs for high-throughput genome editing , 2022 .