On the Elevated Temperature Thermal Stability of Nanoscale Mn-Ni-Si Precipitates Formed at Lower Temperature in Highly Irradiated Reactor Pressure Vessel Steels

[1]  D. Subramony,et al.  Status and Directions , 2020 .

[2]  P. Wells,et al.  Precipitation and hardening in irradiated low alloy steels with a wide range of Ni and Mn compositions , 2019, Acta Materialia.

[3]  D. Morgan,et al.  Thermodynamics and kinetics of core-shell versus appendage co-precipitation morphologies: An example in the Fe-Cu-Mn-Ni-Si system , 2018, Acta Materialia.

[4]  D. Morgan,et al.  Cluster dynamics modeling of Mn-Ni-Si precipitates in ferritic-martensitic steel under irradiation , 2017, 1711.05008.

[5]  D. Morgan,et al.  Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels , 2017, 1707.08072.

[6]  C. Hutchinson,et al.  G phase precipitation and strengthening in ultra-high strength ferritic steels: Towards lean ‘maraging’ metallurgy , 2017 .

[7]  T. Toyama,et al.  The two-step nucleation of G-phase in ferrite , 2016 .

[8]  G. Schmitz,et al.  Towards an accurate volume reconstruction in atom probe tomography. , 2016, Ultramicroscopy.

[9]  T. Stan,et al.  Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels , 2016 .

[10]  P. Edmondson,et al.  Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel , 2016 .

[11]  Joseph Wayne Nielsen As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor , 2015 .

[12]  Xuan Zhang,et al.  In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel , 2015 .

[13]  M. G. Burke,et al.  Post-irradiation annealing of Ni–Mn–Si-enriched clusters in a neutron-irradiated RPV steel weld using Atom Probe Tomography , 2015 .

[14]  J. J. Gallardo,et al.  An experimental and theoretical study , 2015 .

[15]  P. Wells,et al.  Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels , 2014 .

[16]  G. Bonny,et al.  Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys , 2014 .

[17]  D. Morgan,et al.  Thermodynamic models of low-temperature Mn-Ni-Si precipitation in reactor pressure vessel steels , 2014 .

[18]  Lorenzo Malerba,et al.  On the thermal stability of late blooming phases in reactor pressure vessel steels: An atomistic study , 2013 .

[19]  Baptiste Gault,et al.  Atom probe tomography spatial reconstruction: Status and directions , 2013, 1510.02843.

[20]  E. Meslin,et al.  Radiation-induced precipitation in a ferritic model alloy: An experimental and theoretical study , 2013 .

[21]  Charlotte Becquart,et al.  First principle-based AKMC modelling of the formation and medium-term evolution of point defect and solute-rich clusters in a neutron irradiated complex Fe-CuMnNiSiP alloy representative of reactor pressure vessel steels , 2013 .

[22]  R. Nanstad,et al.  Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences , 2013 .

[23]  A. Hirata,et al.  Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al multicomponent ferritic alloy , 2013 .

[24]  G. R. Odette,et al.  A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels , 2013 .

[25]  C. Domain,et al.  Formation and evolution of MnNi clusters in neutron irradiated dilute Fe alloys modelled by a first principle-based AKMC method , 2012 .

[26]  F. Bergner,et al.  Influence of the copper impurity level on the irradiation response of reactor pressure vessel steels investigated by SANS , 2012 .

[27]  K. Wilford,et al.  Precipitation in long term thermally aged high copper, high nickel model RPV steel welds , 2012 .

[28]  B. Radiguet,et al.  Irradiation-Induced Solute Clustering in a Low Nickel FeMnNi Ferritic Alloy , 2011 .

[29]  Guido Schmitz,et al.  On the Field Evaporation Behavior of Dielectric Materials in Three-Dimensional Atom Probe: A Numeric Simulation , 2010, Microscopy and Microanalysis.

[30]  Kunio Onizawa,et al.  Effects of chemical composition and dose on microstructure evolution and hardening of neutron-irradiated reactor pressure vessel steels , 2010 .

[31]  Emmanuelle A. Marquis,et al.  Applications of atom-probe tomography to the characterisation of solute behaviours , 2010 .

[32]  Randy K Nanstad,et al.  Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities , 2009 .

[33]  K. F. Russell,et al.  Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing , 2009 .

[34]  Michael K Miller,et al.  Embrittlement of RPV steels: An atom probe tomography perspective , 2007 .

[35]  K. P. Gupta The Mn-Ni-Si (Manganese-Nickel-Silicon) system , 2006 .

[36]  Mikhail A. Sokolov,et al.  APT characterization of high nickel RPV steels , 2006 .

[37]  T. Yamamoto,et al.  On the effect of dose rate on irradiation hardening of RPV steels , 2005 .

[38]  G. S. Was *,et al.  Hardening and microstructure evolution in proton-irradiated model and commercial pressure-vessel steels , 2005 .

[39]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[40]  A. Bostel,et al.  Trajectory overlaps and local magnification in three-dimensional atom probe , 2000 .

[41]  G. E. Lucas,et al.  Recent progress in understanding reactor pressure vessel steel embrittlement , 1998 .

[42]  Brian D. Wirth,et al.  A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels , 1997 .

[43]  B. Wirth,et al.  A lattice Monte Carlo simulation of nanophase compositions and structures in irradiated pressure vessel Fe-Cu-Ni-Mn-Si steels , 1997 .

[44]  Brian D. Wirth,et al.  On the composition and structure of nanoprecipitates in irradiated pressure vessel steels , 1996 .

[45]  G. R. Odette,et al.  Radiation Induced Microstructural Evolution in Reactor Pressure Vessel Steels , 1994 .

[46]  P. Pareige,et al.  An APFIM study of the microstructure of a ferrite alloy after high fluence neutron irradiation , 1993 .

[47]  Michael K Miller,et al.  Local magnification effects in the atom probe , 1990 .

[48]  Ira R. Weiss,et al.  Issues and opportunities , 1988, DATB.

[49]  G. Odette On the dominant mechanism of irradiation embrittlement of reactor pressure vessel steels , 1983 .

[50]  A. Ardell,et al.  Coarsening of grain-boundary precipitates , 1972 .

[51]  M. Cohen,et al.  Diffusion of nickel into iron , 1961 .