An implementation-friendly binary LDPC decoding algorithm

We introduce an implementation-friendly binary message-passing decoding method for low-density parity-check (LDPC) codes that does not require the degree information of variable nodes or degree dependent parameters. For hard decision decoding, given its low-complexity, the implementation cost for variable node degree information is an important consideration. We develop an estimation method for the extrinsic error probability (EEP) as well as its analysis. The proposed method offers similar performance as the existing methods for time-invariant decoding in most cases, while it facilitates efficient circuit implementations of the LDPC decoder.

[1]  Guosen Yue,et al.  Optimization of irregular repeat accumulate codes for MIMO systems with iterative receivers , 2005, IEEE Transactions on Wireless Communications.

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  L. Bazzi,et al.  Exact thresholds and optimal codes for the binary symmetric channel and Gallager's decoding algorithm A , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[4]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[5]  Hua Xiao,et al.  Time-invariant and switch-type hybrid iterative decoding of low-density parity-check codes , 2005, Ann. des Télécommunications.

[6]  Amir H. Banihashemi,et al.  Hybrid decoding of irregular LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[7]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[8]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[9]  Amir H. Banihashemi,et al.  Hybrid Hard-Decision Iterative Decoding of Irregular Low-Density Parity-Check Codes , 2007, IEEE Transactions on Communications.

[10]  Masoud Ardakani,et al.  Gear-shift decoding , 2006, IEEE Transactions on Communications.

[11]  Amir H. Banihashemi,et al.  Threshold values and convergence properties of majority-based algorithms for decoding regular low-density parity-check codes , 2004, IEEE Transactions on Communications.

[12]  Amir H. Banihashemi,et al.  Hybrid hard-decision iterative decoding of regular low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[13]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[14]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[15]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[16]  Masoud Ardakani,et al.  Properties of optimum binary message-passing decoders , 2005, IEEE Transactions on Information Theory.