Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation

Recent advances in experimental techniques (on-the- fly and ultrafast techniques) allow measurement of threshold voltage degradation due to negative-bias temperature instability (NBTI) over many decades in timescale. Such measurements over wider temperature range (-25degC to 145degC), film thicknesses (1.2-2.2 nm of effective oxide thickness), and processing conditions (variation of nitrogen within gate dielectric) provide an excellent framework for a theoretical analysis of NBTI degradation. In this paper, we analyze these experiments to refine the existing theory of NBTI to 1) explore the mechanics of time transients of NBTI over many orders of magnitude in time; 2) establish field dependence of interface trap generation to resolve questions regarding the appropriateness of power law versus exponential projection of lifetimes; 3) ascertain the relative contributions to NBTI from interface traps versus hole trapping as a function of processing conditions; and 4) briefly discuss relaxation dynamics for fast-transient NBTI recovery that involves interface traps and trapped holes.

[1]  S. Novak,et al.  Characterization of silicon oxynitride thin films by x-ray photoelectron spectroscopy , 1999 .

[2]  A. S. Grove,et al.  Characteristics of the Surface‐State Charge (Qss) of Thermally Oxidized Silicon , 1967 .

[3]  Muhammad Ashraful Alam,et al.  A comprehensive model of PMOS NBTI degradation , 2005, Microelectron. Reliab..

[4]  Theory of hydrogen-related levels in semiconductors and oxides , 2005 .

[5]  F. Nouri,et al.  On the dispersive versus arrhenius temperature activation of nbti time evolution in plasma nitrided gate oxides: measurements, theory, and implications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[6]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[7]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[8]  E. Murakami,et al.  Modeling of NBTI degradation and its impact on electric field dependence of the lifetime , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[9]  T. P. Chen,et al.  Nitrogen-enhanced negative bias temperature instability: An insight by experiment and first-principle calculations , 2003 .

[10]  S. Zafar Statistical mechanics based model for negative bias temperature instability induced degradation , 2005 .

[11]  P.S. Reddy,et al.  A new drain voltage enhanced NBTI degradation mechanism [pMOSFETs] , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[12]  H. Kufluoglu,et al.  A Generalized Reaction–Diffusion Model With Explicit H– $\hbox{H}_{2}$ Dynamics for Negative-Bias Temperature-Instability (NBTI) Degradation , 2007, IEEE Transactions on Electron Devices.

[13]  H. Reisinger,et al.  Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast VT-Measurements , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[14]  Y. Mitani Influence of nitrogen in ultra-thin SiON on negative bias temperature instability under AC stress , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[15]  K. Wu,et al.  A new finding on NBTI lifetime model and an investigation on NBTI degradation characteristic for 1.2nm ultra thin oxide [MOSFETs] , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[16]  H. Vaidya,et al.  Self-consistent simulation of quantization effects and tunneling current in ultra-thin gate oxide MOS devices , 1999, 1999 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD'99 (IEEE Cat. No.99TH8387).

[17]  James D. Plummer,et al.  Time Resolved Annealing of Interface Traps in Polysilicon Gate Metal‐Oxide‐Silicon Capacitors , 1987 .

[18]  Ingemar Lundström,et al.  Discharge of MNOS structures , 1973 .

[19]  C.H. Kim,et al.  An Analytical Model for Negative Bias Temperature Instability , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[20]  D. Kwong,et al.  Dynamic NBTI of p-MOS transistors and its impact on MOSFET scaling , 2002, IEEE Electron Device Letters.

[21]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[22]  P. Nicollian,et al.  Negative bias temperature instability mechanism: The role of molecular hydrogen , 2006 .

[23]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[24]  E. Cartier,et al.  Threshold Voltage Instabilities in High- Gate Dielectric Stacks , 2005 .

[25]  K. Ahmed,et al.  On the Physical Mechanism of NBTI in Silicon Oxynitride p-MOSFETs: Can Differences in Insulator Processing Conditions Resolve the Interface Trap Generation versus Hole Trapping Controversy? , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[26]  M. Denais,et al.  A thorough investigation of MOSFETs NBTI degradation , 2005, Microelectron. Reliab..

[27]  Shahid Rauf,et al.  Model for nitridation of nanoscale SiO2 thin films in pulsed inductively coupled N2 plasma , 2005 .

[28]  S. Mahapatra,et al.  Gate Leakage vs. NBTI in Plasma Nitrided Oxides: Characterization, Physical Principles, and Optimization , 2006, 2006 International Electron Devices Meeting.

[29]  V. Huard,et al.  New Insights into Recovery Characteristics Post NBTI Stress , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[30]  Y. Yeo,et al.  Characterization and Physical Origin of Fast Vth Transient in NBTI of pMOSFETs with SiON Dielectric , 2006, 2006 International Electron Devices Meeting.

[31]  T. Grasser,et al.  The Universality of NBTI Relaxation and its Implications for Modeling and Characterization , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[32]  K. Jeppson,et al.  Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices , 1977 .

[33]  J. McPherson,et al.  UNDERLYING PHYSICS OF THE THERMOCHEMICAL E MODEL IN DESCRIBING LOW-FIELD TIME-DEPENDENT DIELECTRIC BREAKDOWN IN SIO2 THIN FILMS , 1998 .

[34]  N. Collaert,et al.  Disorder-controlled-kinetics model for negative bias temperature instability and its experimental verification , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[35]  T. Ning Capture cross section and trap concentration of holes in silicon dioxide , 1976 .

[36]  D. Varghese,et al.  A comprehensive model for PMOS NBTI degradation: Recent progress , 2007, Microelectron. Reliab..

[37]  M. Alam,et al.  Critical analysis of short-term negative bias temperature instability measurements : Explaining the effect of time-zero delay for on-the-fly measurements , 2007 .

[38]  V. Reddy,et al.  A comprehensive framework for predictive modeling of negative bias temperature instability , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[39]  S. Mahapatra,et al.  A new observation of enhanced bias temperature instability in thin gate oxide p-MOSFETs , 2003, IEEE International Electron Devices Meeting 2003.

[40]  K. Yamaguchi,et al.  The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling , 1999, 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325).

[41]  V. Huard,et al.  Physical Modeling of Negative Bias Temperature Instabilities for Predictive Extrapolation , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[42]  Blair R. Tuttle,et al.  Energetics and diffusion of hydrogen in SiO 2 , 2000 .

[43]  D. Ang,et al.  Recovery of the NBTI-Stressed Ultrathin Gate p-MOSFET: The Role of Deep-Level Hole Traps , 2006, IEEE Electron Device Letters.

[44]  M.A. Alam,et al.  A critical examination of the mechanics of dynamic NBTI for PMOSFETs , 2003, IEEE International Electron Devices Meeting 2003.

[45]  Jianbo Yang,et al.  Analytical reaction-diffusion model and the modeling of nitrogen-enhanced negative bias temperature instability , 2006 .

[46]  P. Nicollian,et al.  Material dependence of hydrogen diffusion: implications for NBTI degradation , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[47]  S. Mahapatra,et al.  Interface-Trap Driven NBTI for Ultrathin (EOT~12Å) Plasma and Thermal Nitrided Oxynitrides , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[48]  Mark L. Green,et al.  Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits , 2001 .

[49]  S. Demuynck,et al.  AC NBTI studied in the 1 Hz -- 2 GHz range on dedicated on-chip CMOS circuits , 2006, 2006 International Electron Devices Meeting.

[50]  D. Schroder,et al.  Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing , 2003 .

[51]  N. Mielke,et al.  Universal recovery behavior of negative bias temperature instability [PMOSFETs] , 2003, IEEE International Electron Devices Meeting 2003.

[52]  H. Z. Massoud,et al.  Charge‐transfer dipole moments at the Si–SiO2 interface , 1988 .

[53]  peixiong zhao,et al.  Physical mechanisms of negative-bias temperature instability , 2005 .

[54]  Theory of hydrogen-related levels in semiconductors and oxides , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[55]  E. Cartier,et al.  Threshold voltage instabilities in high-/spl kappa/ gate dielectric stacks , 2005, IEEE Transactions on Device and Materials Reliability.

[56]  R. Degraeve,et al.  Hole traps in silicon dioxides. Part I. Properties , 2004, IEEE Transactions on Electron Devices.