Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets.

[1]  Fabrizio Davide,et al.  Tasting of beverages using an electronic tongue , 1997 .

[2]  K. Toko,et al.  Detection of suppression of bitterness by sweet substance using a multichannel taste sensor. , 1998, Journal of pharmaceutical sciences.

[3]  Kiyoshi Toko,et al.  Dynamic Aspect of a Phase Transition in DOPH-Millipore Membranes , 1981 .

[4]  K Kurihara,et al.  Physicochemical studies of taste reception. I. Model membrane simulating taste receptor potential in response to stimuli of salts, acids and distilled water. , 1974, Biochimica et biophysica acta.

[5]  Takahiro Uchida,et al.  Evaluation of bottled nutritive drinks using a taste sensor. , 2004, International journal of pharmaceutics.

[6]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[7]  K. Toko,et al.  Electric oscillation in an excitable model membrane impregnated with lipid analogues. , 1987, Biophysical chemistry.

[8]  M. Teubner,et al.  Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure. , 1976, Biophysical chemistry.

[9]  Kenshi Hayashi,et al.  Effect of taste substances on aperiodic oscillation of an electric potential in a synthetic lipid membrane , 1989 .

[10]  F. J. Pilgrim,et al.  Differential sensitivity in gustation. , 1957, Journal of experimental psychology.

[11]  Kiyoshi Toko,et al.  Quantification of taste of coffee using sensor with global selectivity , 1996 .

[12]  Kiyoshi Toko,et al.  Quantification of Taste of Green Tea with Taste Sensor , 1996 .

[13]  Shigehisa Arai,et al.  Design and Development of 1.55 μm Single-Mode Semiconductor Lasers Consisting of Deeply Etched Grooves Buried with Benzocyclobutene , 2000 .

[14]  T. Uchida,et al.  Quantitative evaluation of the bitterness of commercial medicines using a taste sensor. , 2000, Chemical & pharmaceutical bulletin.

[15]  Gary J. Pickering,et al.  Astringency: Mechanisms and Perception , 2008, Critical reviews in food science and nutrition.

[16]  Susan S. Schiffman,et al.  Chorda tympani and lingual nerve responses to astringent compounds in rodents , 1992, Physiology & Behavior.

[17]  Hidekazu Ikezaki,et al.  Prediction of the bitterness of single, binary- and multiple-component amino acid solutions using a taste sensor. , 2002, International journal of pharmaceutics.

[18]  Yuzo Ninomiya,et al.  Increase in Inositol 1,4,5-Trisphosphate Levels of the Fungiform Papilla in Response to Saccharin and Bitter Substances in Mice , 1998, Cellular Physiology and Biochemistry.

[19]  Takahiro Uchida,et al.  The taste sensory evaluation of medicinal plants and Chinese medicines. , 2008, International journal of pharmaceutics.

[20]  Takahiro Uchida,et al.  The suppression of enhanced bitterness intensity of macrolide dry syrup mixed with an acidic powder. , 2007, Chemical & pharmaceutical bulletin.

[21]  Peter Kleinebudde,et al.  Performance qualification of an electronic tongue based on ICH guideline Q2. , 2010, Journal of pharmaceutical and biomedical analysis.

[22]  A. T. Poffenberger,et al.  The Sense of Taste , 2009 .

[23]  Hitoshi Inada,et al.  Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor , 2006, Proceedings of the National Academy of Sciences.

[24]  Y. Vlasov,et al.  Non-selective chemical sensors in analytical chemistry: from “electronic nose” to “electronic tongue” , 1998 .

[25]  K. Toko,et al.  Influence of monovalent and divalent cations on the surface area of phosphatidylglycerol monolayers. , 1980, Chemistry and physics of lipids.

[26]  L. Schild,et al.  Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. , 2002, Physiological reviews.

[27]  Andrew I. Spielman,et al.  Bitter taste transduced by PLC-β2-dependent rise in IP3 and α-gustducin-dependent fall in cyclic nucleotides , 2001 .

[28]  Y. Ninomiya,et al.  Qualitative discrimination among umami and the four basic taste substances in mice , 1987 .

[29]  Hidekazu Ikezaki,et al.  Bitterness prediction or bitterness suppression in human medicines using a taste sensor , 2002 .

[30]  K. Toko,et al.  Measurements of soy sauce using taste sensor , 2000 .

[31]  H. Ikezaki,et al.  Evaluation of the umami taste intensity of green tea by a taste sensor. , 2008, Journal of agricultural and food chemistry.

[32]  E. Mazzone,et al.  Application of Electronic Tongue for Quantitative Analysis of Mineral Water and Wine , 1999 .

[33]  K. Uekama,et al.  Design and evaluation of cyclodextrin-based drug formulation. , 2004, Chemical & pharmaceutical bulletin.

[34]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[35]  Kiyoshi Toko,et al.  Self-Sustained Oscillations of Membrane Potential in DOPH-Millipore Membranes , 1982 .

[36]  Kiyoshi Toko,et al.  Analysis of Sake Mash Using Multichannel Taste Sensor , 1996 .

[37]  L. Danielsson,et al.  Methods for determiningn-octanol-water partition constants , 1996 .

[38]  I. Lundström,et al.  An electronic tongue based on voltammetry , 1997 .

[39]  Kiyoshi Toko,et al.  Development of an Artificial Lipid-Based Membrane Sensor with High Selectivity and Sensitivity to the Bitterness of Drugs and with High Correlation with Sensory Score , 2009 .

[40]  Kiyoshi Toko,et al.  Biomimetic Sensor Technology , 2000 .

[41]  Kiyoshi Toko,et al.  Detection of Sugars Using Lipid/Polymer Membranes , 2007 .

[42]  Kenshi Hayashi,et al.  Adsorption of taste substances to lipid membranes of taste sensor , 1999 .

[43]  Takahiro Uchida,et al.  Evaluation of bitterness suppression of macrolide dry syrups by jellies. , 2006, Chemical & pharmaceutical bulletin.

[44]  Takahiro Uchida,et al.  The quantitative prediction of bitterness-suppressing effect of sweeteners on the bitterness of famotidine by sweetness-responsive sensor. , 2007, Chemical & pharmaceutical bulletin.

[45]  Mitsuyoshi Okamoto,et al.  Bitterness evaluation of orally disintegrating famotidine tablets using a taste sensor , 2009 .

[46]  Yuzo Ninomiya,et al.  Transduction for Sweet Taste of Saccharin May Involve Both Inositol 1,4,5-Trisphosphate and cAMP Pathways in the Fungiform Taste Buds in C57BL Mice , 1999, Cellular Physiology and Biochemistry.

[47]  Kenshi Hayashi,et al.  Electric characteristics of lipid-modified monolayer membranes for taste sensors , 1995 .

[48]  R. Paolesse,et al.  Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine , 2000 .

[49]  Hidekazu Ikezaki,et al.  Evaluation of the bitterness of antibiotics using a taste sensor , 2003, The Journal of pharmacy and pharmacology.

[50]  K. Toko,et al.  Theory of electric characteristics of the lipid/PVC/DOPP membrane and PVC/DOPP membrane in response to taste stimuli. , 1996, Biophysical chemistry.

[51]  Takahiro Uchida,et al.  The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions. , 2004, Chemical & pharmaceutical bulletin.

[52]  T. Uchida,et al.  Bitterness suppression of BCAA solutions by L-ornithine. , 2006, Chemical & pharmaceutical bulletin.

[53]  J. Desimone,et al.  Acid detection by taste receptor cells. , 2001, Respiration physiology.

[54]  Takahiro Uchida,et al.  Quantitative Prediction of the Bitterness Suppression of Elemental Diets by Various Flavors Using a Taste Sensor , 2003, Pharmaceutical Research.

[55]  Linda M. Bartoshuk,et al.  Taste mixtures: Is mixture suppression related to compression? , 1975, Physiology & Behavior.

[56]  Takahiro Uchida,et al.  Bitterness evaluation of medicines for pediatric use by a taste sensor. , 2004, Chemical & pharmaceutical bulletin.

[57]  K. Hayashi,et al.  Multichannel taste sensor using lipid membranes , 1990 .

[58]  Keiko Abe,et al.  Acetic acid activates PKD1L3-PKD2L1 channel--a candidate sour taste receptor. , 2009, Biochemical and biophysical research communications.

[59]  K Kurihara,et al.  Physicochemical studies of taste reception. II. Possible mechanism of generation of taste receptor potential induced by salt stimuli. , 1974, Biochimica et biophysica acta.

[60]  C. Bell,et al.  Localization of a gene for bitter-taste perception to human chromosome 5p15. , 1999, American journal of human genetics.

[61]  Kiyoshi Toko,et al.  Effect of Bitter Substances on a Model Membrane System of Taste Reception , 1986 .

[62]  N. Ryba,et al.  Coding of Sweet, Bitter, and Umami Tastes Different Receptor Cells Sharing Similar Signaling Pathways , 2003, Cell.

[63]  B. Zaslavsky,et al.  pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two-phase and octanol-buffer partitioning. , 2008, The journal of peptide research : official journal of the American Peptide Society.

[64]  Nobuyuki Hayashi,et al.  Techniques for Universal Evaluation of Astringency of Green Tea Infusion by the Use of a Taste Sensor System , 2006, Bioscience, biotechnology, and biochemistry.

[65]  M Tsukiji,et al.  On the oscillatory phenomenon in an oil/water interface. , 1985, Biophysical chemistry.

[66]  K. Toko,et al.  Fabrication of Taste Sensor Chip and Portable Taste Sensor System , 2006, 2006 International Conference on Microtechnologies in Medicine and Biology.

[67]  C. Di Natale,et al.  Nonspecific sensor arrays ("electronic tongue") for chemical analysis of liquids (IUPAC Technical Report) , 2005 .

[68]  Kenshi Hayashi,et al.  Peculiar change in membrane potential of taste sensor caused by umami substances , 2003 .

[69]  Kenshi Hayashi,et al.  Taste Sensor Chip for Portable Taste Sensor System , 2008 .

[70]  N. Ryba,et al.  T2Rs Function as Bitter Taste Receptors , 2000, Cell.

[71]  S. Donovan,et al.  Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly(vinyl alcohol) high-performance liquid chromatography columns. , 2002, Journal of chromatography. A.

[72]  K. Toko,et al.  Stabilization effect of protons and divalent cations on membrane structures of lipids. , 1981, Biophysical chemistry.

[73]  M Tsukiji,et al.  Dynamic property of membrane formation in a protoplasmic droplet of Nitella. , 1985, Biophysical chemistry.

[74]  K. Toko,et al.  Multichannel taste sensor using electric potential changes in lipid membranes. , 1994, Biosensors & bioelectronics.

[75]  K. Toko,et al.  Quantification of suppression of bitterness using an electronic tongue. , 2001, Journal of pharmaceutical sciences.

[76]  Y. Katsuragi,et al.  Selective Inhibition of Bitter Taste of Various Drugs by Lipoprotein , 1995, Pharmaceutical Research.

[77]  Y. Arikawa,et al.  Analysis of sake taste using multielectrode taste sensor , 1995 .

[78]  Kiyoshi Toko,et al.  Monitoring of fermentation process of miso (soybean paste) using multichannel taste sensor , 1996 .

[79]  Kiyoshi Toko,et al.  STUDY ON EVALUATING JIMI-TASTE OF GREEN TEA USING MULTICHANNEL TASTE SENSOR , 2008 .

[80]  Kenshi Hayashi,et al.  Self-Organized Electric Structure in Uni- and Multicellular Biological Systems , 1989 .

[81]  Hiroshi Okadome,et al.  Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system , 2004 .

[82]  N. Ryba,et al.  The receptors and cells for mammalian taste , 2006, Nature.

[83]  Kiyoshi Toko,et al.  Highly sensitive discrimination of taste of milk with homogenization treatment using a taste sensor , 1997 .

[84]  Takahiro Uchida,et al.  The effect of various substances on the suppression of the bitterness of quinine-human gustatory sensation, binding, and taste sensor studies. , 2002, Chemical & pharmaceutical bulletin.

[85]  Takahiro Uchida,et al.  Suppression of the bitterness of enteral nutrients using increased particle sizes of branched-chain amino acids (BCAAs) and various flavours: a taste sensor study. , 2004, Chemical & pharmaceutical bulletin.

[86]  M Funakoshi,et al.  A neurophysiological study on astringent taste. , 1969, The Japanese journal of physiology.

[87]  Kiyoshi Toko,et al.  Self-Oscillation of Electric Potential of a Porous Membrane Impregnated with Polymer Multi-Bilayer Complexes , 1986 .

[88]  Kiyoshi Toko Multichannel Taste Sensor with Lipid Membranes. , 1990 .

[89]  M Tsukiji,et al.  Self-sustained oscillations of electric potential in a model membrane. , 1985, Biophysical chemistry.

[90]  Kenshi Hayashi,et al.  Effect of several sweet substances on the electrical characteristics of a dioleyl phosphate-millipore membrane , 1989 .

[91]  Makoto Kashiwayanagi,et al.  Neuroblastoma cell as a model for a taste cell: mechanism of depolarization in response to various bitter substances , 1985, Brain Research.

[92]  Takahiro Uchida,et al.  Quantitative taste evaluation of total enteral nutrients. , 2004, Chemical & pharmaceutical bulletin.

[93]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[94]  Kiyoshi Toko,et al.  Electric Characteristics of Hybrid Polymer Membranes Composed of Two Lipid Species. , 1995 .

[95]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[96]  I. Lundström,et al.  A hybrid electronic tongue. , 2000 .

[97]  Y. Kobayashi,et al.  A new method for evaluating the bitterness of medicines by semi-continuous measurement of adsorption using a taste sensor. , 2001, Chemical & pharmaceutical bulletin.

[98]  Shobha Ghosh,et al.  The mammalian amiloride‐insensitive non‐specific salt taste receptor is a vanilloid receptor‐1 variant , 2004, The Journal of physiology.

[99]  M Tsukiji,et al.  Current-voltage characteristics and self-sustained oscillations in dioleyl phosphate-millipore membranes. , 1984, Biophysical chemistry.

[100]  Danilo De Rossi,et al.  Discrimination of wine using taste and smell sensors , 1998 .

[101]  Kiyoshi Toko,et al.  Flavor evaluation using taste sensor for UHT processed milk stored in cartons having different light permeabilities. , 2009 .

[102]  Y. Ueda,et al.  Flavor characteristics of glutathione in raw and cooked foodstuffs. , 1997, Bioscience, biotechnology, and biochemistry.

[103]  W. G. S.,et al.  Sense of Taste , 1888, Nature.

[104]  Kiyoshi Toko,et al.  Quantification of Suppression of Bitterness by Phospholipids Using Taste Sensor , 1999 .

[105]  Takahiro Uchida,et al.  The bitterness intensity of clarithromycin evaluated by a taste sensor. , 2003, Chemical & pharmaceutical bulletin.

[106]  Kiyoshi Toko,et al.  Effect of taste substances on electric characteristics of a lipid cast membrane with a single pore , 1989 .

[107]  M. Habara,et al.  Study of surface-modified lipid/polymer membranes for detecting sweet taste substances , 2008, 2008 3rd International Conference on Sensing Technology.