Stable second-order nonlinearity in SiO2-based waveguides on Si using temperature/electric-field poling

A stable second-order nonlinearity established by temperature/electric-field poling of a SiO2-based waveguide stack on a Si substrate with a nonlinearity comparable to that observed in bulk fused silica samples (approximately 1 pm/V) is described. Samples with various layer thickness and composition are compared to determine important parameters in generating the second-order nonlinearity. Temperature and voltage studies are also presented to help understand the dynamics of the nonlinearity.