Light-driven water oxidation for solar fuels.

Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO2 was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode. Inspired by this system, more recent work has focused on functionalizing nanoporous TiO2 or other semiconductor surfaces with molecular adsorbates, including chromophores and catalysts that absorb visible light and generate electricity (i.e., dye-sensitized solar cells) or trigger water oxidation at low overpotentials (i.e., photocatalytic cells). The physics involved in harnessing multiple photochemical events for multielectron reactions, as required in the four-electron water oxidation process, has been the subject of much experimental and computational study. In spite of significant advances with regard to individual components, the development of highly efficient photocatalytic cells for solar water splitting remains an outstanding challenge. This article reviews recent progress in the field with emphasis on water-oxidation photoanodes inspired by the design of functionalized thin film semiconductors of typical dye-sensitized solar cells.

[1]  T. Rajh,et al.  A bioinspired construct that mimics the proton coupled electron transfer between P680*+ and the Tyr(Z)-His190 pair of photosystem II. , 2008, Journal of the American Chemical Society.

[2]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[3]  Robert C. Snoeberger,et al.  Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)-terpyridine complexes. , 2008, Journal of the American Chemical Society.

[4]  P. Bremer,et al.  Infrared spectroscopic studies of siderophore-related hydroxamic acid ligands adsorbed on titanium dioxide. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[5]  M. Wasielewski,et al.  Competitive Electron Transfer from the S2and S1Excited States of Zincmeso-Tetraphenylporphyrin to a Covalently Bound Pyromellitimide: Dependence on Donor−Acceptor Structure and Solvent , 2004 .

[6]  Hee-eun Song,et al.  A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst , 2011 .

[7]  Anders Hagfeldt,et al.  Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films. , 2005, The journal of physical chemistry. B.

[8]  Y. Tachibana,et al.  Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers , 2001 .

[9]  K. Hara,et al.  Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes. , 2005, The journal of physical chemistry. B.

[10]  S. Styring,et al.  Towards an artificial model for Photosystem II: a manganese(II,II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative. , 2000, Journal of inorganic biochemistry.

[11]  A. Mills,et al.  Persulphate quenching of the excited state of ruthenium(II) tris-bipyridyl dication: thermal reactions , 1994 .

[12]  T. Lian,et al.  Electron injection dynamics of Ru polypyridyl complexes on SnO2 nanocrystalline thin films. , 2005, The journal of physical chemistry. B.

[13]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[14]  W. Casey,et al.  Water-oxidation catalysis by manganese in a geochemical-like cycle. , 2011, Nature chemistry.

[15]  Gonghu Li,et al.  Energy conversion in natural and artificial photosynthesis. , 2010, Chemistry & biology.

[16]  David R. Klug,et al.  Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2 , 2002 .

[17]  Michael Grätzel,et al.  Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. , 2005, Journal of the American Chemical Society.

[18]  V. Sundström,et al.  Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy. , 2010, Physical review letters.

[19]  R. Ziessel,et al.  3-Substituted-2,4-pentanedionates: ligands for photoactive supramolecular assemblies. , 2011, Chemical communications.

[20]  Haihong Wu,et al.  An efficient and mild CuI/L-proline-catalyzed arylation of acetylacetone or ethyl cyanoacetate , 2005 .

[21]  A. Furube,et al.  Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In2O3 thin films: Comparison with SnO2, ZnO, and TiO2 films , 2006 .

[22]  Eduardo M. Sproviero,et al.  Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization , 2009 .

[23]  Mattias Nilsing,et al.  Anchor Group Influence on Molecule-Metal Oxide Interfaces: Periodic Hybrid DFT Study of Pyridine Bound to TiO2 via Carboxylic and Phosphonic Acid , 2005 .

[24]  Yuanmin Wang,et al.  Probing single-molecule interfacial electron transfer dynamics of porphyrin on TiO2 nanoparticles. , 2009, Journal of the American Chemical Society.

[25]  Charles A Schmuttenmaer,et al.  Exciton-like trap states limit electron mobility in TiO2 nanotubes. , 2010, Nature nanotechnology.

[26]  Yu-Cheng Chang,et al.  A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. , 2011, Chemical communications.

[27]  Matti Haukka,et al.  Halogen bonding--a key step in charge recombination of the dye-sensitized solar cell. , 2011, Chemical communications.

[28]  Michael R. Wasielewski,et al.  Photoinduced electron transfer in supramolecular systems for artificial photosynthesis , 1992 .

[29]  Thomas W. Hamann,et al.  Dye-sensitized solar cell redox shuttles , 2011 .

[30]  R. Crabtree Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. , 2012, Chemical reviews.

[31]  L. Bunch,et al.  Review on modern advances of chemical methods for the introduction of a phosphonic acid group. , 2011, Chemical reviews.

[32]  P. Frantsuzov,et al.  Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles , 2010, Proceedings of the National Academy of Sciences.

[33]  S. Labadie 3-Aryl-2,4-pentanediones from 3,5-Dimethyl-4-iodoisoxazoles: An Application of a Palladium-Catalyzed Cross-Coupling Reaction , 1994 .

[34]  G. Brudvig,et al.  Water-splitting chemistry of photosystem II. , 2006, Chemical reviews.

[35]  David M. Robinson,et al.  Water oxidation by lambda-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. , 2010, Journal of the American Chemical Society.

[36]  Licheng Sun,et al.  Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charged tridentate ligand. , 2010, Chemistry.

[37]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[38]  Craig A. Grimes,et al.  Formation of Vertically Oriented TiO2 Nanotube Arrays using a Fluoride Free HCl Aqueous Electrolyte , 2007 .

[39]  Thomas E. Mallouk,et al.  Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids , 2000 .

[40]  F. Nastasi,et al.  Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer. , 2009, Dalton transactions.

[41]  Donald Fitzmaurice,et al.  Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films , 1992 .

[42]  James D. Blakemore,et al.  Bioinspired High-Potential Porphyrin Photoanodes , 2012 .

[43]  Victor S Batista,et al.  Inverse design and synthesis of acac-coumarin anchors for robust TiO2 sensitization. , 2011, Journal of the American Chemical Society.

[44]  M. Kärkäs,et al.  Photosensitized water oxidation by use of a bioinspired manganese catalyst. , 2011, Angewandte Chemie.

[45]  K. Morokuma,et al.  Comparison of interfacial electron transfer through carboxylate and phosphonate anchoring groups. , 2007, The journal of physical chemistry. A.

[46]  Michael Grätzel,et al.  Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex , 1997 .

[47]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[48]  S. Haque,et al.  Towards optimisation of electron transfer processes in dye sensitised solar cells , 2004 .

[49]  Jie Song,et al.  Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. , 2011, Journal of the American Chemical Society.

[50]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[51]  Javier J. Concepcion,et al.  Catalytic and surface-electrocatalytic water oxidation by redox mediator-catalyst assemblies. , 2009, Angewandte Chemie.

[52]  Kyoung-Shin Choi,et al.  Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[53]  Elena Galoppini,et al.  Linkers for anchoring sensitizers to semiconductor nanoparticles , 2004 .

[54]  Licheng Sun,et al.  Chemical and light-driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex. , 2010, Angewandte Chemie.

[55]  Robin Brimblecombe,et al.  Solar driven water oxidation by a bioinspired manganese molecular catalyst. , 2010, Journal of the American Chemical Society.

[56]  Licheng Sun,et al.  Ce(IV)- and light-driven water oxidation by [Ru(terpy)(pic)3]2+ analogues: catalytic and mechanistic studies. , 2010, ChemSusChem.

[57]  Z. Tian,et al.  pH-dependent electron transfer from re-bipyridyl complexes to metal oxide nanocrystalline thin films. , 2005, The journal of physical chemistry. B.

[58]  Simona Fantacci,et al.  Synthesis, characterization, and DFT-TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand. , 2006, Inorganic chemistry.

[59]  Anders Thapper,et al.  Photochemical water oxidation with visible light using a cobalt containing catalyst , 2011 .

[60]  F. D’Souza,et al.  Supramolecular solar cells: surface modification of nanocrytalline TiO(2) with coordinating ligands to immobilize sensitizers and dyads via metal-ligand coordination for enhanced photocurrent generation. , 2009, Journal of the American Chemical Society.

[61]  T. Lian,et al.  Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film , 2003 .

[62]  Mei Wang,et al.  Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system. , 2009, Inorganic chemistry.

[63]  K. Wieghardt,et al.  Intramolecular Electron Transfer from Mn or Ligand Phenolate to Photochemically Generated RuIII in Multinuclear Ru/Mn Complexes. Laser Flash Photolysis and EPR Studies on Photosystem II Models , 1999 .

[64]  M. Yagi,et al.  Electrocatalytic and photocatalytic water oxidation to dioxygen based on metal complexes , 2010 .

[65]  Vladimir Bulovic,et al.  Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes , 2011 .

[66]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[67]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[68]  Anders Hagfeldt,et al.  A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. , 2010, Chemical communications.

[69]  Mohammad Khaja Nazeeruddin,et al.  Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured TiO2 Films , 1990 .

[70]  A. Rutherford,et al.  Intramolecular light induced activation of a Salen-Mn(III) complex by a ruthenium photosensitizer. , 2010, Chemical communications.

[71]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[72]  E. Costa,et al.  Phosphonate-based bipyridine dyes for stable photovoltaic devices. , 2001, Inorganic chemistry.

[73]  J. Hao,et al.  Transient photoconductivity properties of tungsten oxide thin films prepared by spray pyrolysis , 2001 .

[74]  T. Lian,et al.  Ultrafast Electron Transfer from Ru Polypyridyl Complexes to Nb2O5 Nanoporous Thin Films , 2004 .

[75]  Javier J. Concepcion,et al.  Photoinduced Stepwise Oxidative Activation of a Chromophore–Catalyst Assembly on TiO2 , 2011 .

[76]  Edwin J. Heilweil,et al.  Electron Injection, Recombination, and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces , 2000 .

[77]  Robin Brimblecombe,et al.  Molecular water-oxidation catalysts for photoelectrochemical cells. , 2009, Dalton transactions.

[78]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[79]  Mei Wang,et al.  Photochemical H2 with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst. , 2010, Chemical communications.

[80]  T. Mallouk,et al.  Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. , 2009, Journal of the American Chemical Society.

[81]  V. Batista,et al.  Thiocyanate linkage isomerism in a ruthenium polypyridyl complex. , 2011, Inorganic chemistry.

[82]  S. Zakeeruddin,et al.  Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. [Erratum to document cited in CA122:165412] , 1995 .

[83]  K. Kadish,et al.  Cobalt(IV) corroles as catalysts for the electroreduction of O2: reactions of heterobimetallic dyads containing a face-to-face linked Fe(III) or Mn(III) porphyrin. , 2006, Journal of inorganic biochemistry.

[84]  T. Mallouk,et al.  Kinetics of Electron Transfer and Oxygen Evolution in the Reaction of [Ru(bpy)3]3+ with Colloidal Iridium Oxide , 2004 .

[85]  M. W. George,et al.  Photochemistry and photophysics of a Pd(II) metalloporphyrin: Re(I) tricarbonyl bipyridine molecular dyad and its activity toward the photoreduction of CO2 to CO. , 2011, Inorganic chemistry.

[86]  William Stier,et al.  Nonadiabatic Molecular Dynamics Simulation of Light-Induced Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor Acceptor † , 2002 .

[87]  T. Buonassisi,et al.  Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst , 2011, Proceedings of the National Academy of Sciences.

[88]  K. Hara,et al.  A High‐Light‐Harvesting‐Efficiency Coumarin Dye for Stable Dye‐Sensitized Solar Cells , 2007 .

[89]  Jung‐Kun Lee,et al.  Carrier Transport in Dye-Sensitized Solar Cells Using Single Crystalline TiO2 Nanorods Grown by a Microwave-Assisted Hydrothermal Reaction , 2011 .

[90]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[91]  O. Wenger How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences. , 2011, Accounts of chemical research.

[92]  M. Fischer,et al.  Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. , 2009, Angewandte Chemie.

[93]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[94]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[95]  S. Styring,et al.  Photo-induced oxidation of a dinuclear Mn(2)(II,II) complex to the Mn(2)(III,IV) state by inter- and intramolecular electron transfer to Ru(III)tris-bipyridine. , 2002, Journal of inorganic biochemistry.

[96]  J. A. Seabold,et al.  Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode , 2011 .

[97]  A. Rutherford,et al.  Light-driven activation of the [H2O(terpy)Mn(III)-μ-(O2)-Mn(IV)(terpy)OH2] unit in a chromophore-catalyst complex. , 2011, Chemistry, an Asian journal.

[98]  Robert C. Snoeberger,et al.  Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles , 2009 .

[99]  N. Serpone,et al.  Photoluminescence and Transient Spectroscopy of Free Base Porphyrin Aggregates , 1999 .

[100]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[101]  D. Klug,et al.  Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes , 2000 .

[102]  Hee-eun Song,et al.  Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer , 2010 .

[103]  Reversible visible-light photooxidation of an oxomanganese water-oxidation catalyst covalently anchored to TiO2 nanoparticles. , 2010, The journal of physical chemistry. B.

[104]  M. Ziółek,et al.  Photophysical processes in electronic states of zinc tetraphenyl porphyrin accessed on one- and two-photon excitation in the soret region , 2007 .

[105]  Hyunwoong Park,et al.  Effect of the anchoring group in Ru-bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages. , 2006, The journal of physical chemistry. B.

[106]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[107]  R. Finke,et al.  Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10-: identification of heterogeneous CoOx as the dominant catalyst. , 2011, Journal of the American Chemical Society.

[108]  A. Harriman,et al.  Energy flow in a purpose-built cascade molecule bearing three distinct chromophores attached to the terminal acceptor. , 2008, Chemistry.

[109]  T. Meyer,et al.  Molecular Energy Transfer across Oxide Surfaces , 2001 .

[110]  Haik Chosrowjan,et al.  Internal Conversion and Vibronic Relaxation from Higher Excited Electronic State of Porphyrins: Femtosecond Fluorescence Dynamics Studies , 2000 .

[111]  P. Coppens,et al.  The crystalline nanocluster phase as a medium for structural and spectroscopic studies of light absorption of photosensitizer dyes on semiconductor surfaces. , 2010, Journal of the American Chemical Society.

[112]  S. Bernhard,et al.  Solar fuels: thermodynamics, candidates, tactics, and figures of merit. , 2010, Dalton transactions.

[113]  Anders Hagfeldt,et al.  Effect of Anchoring Group on Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells , 2009 .

[114]  X. Xie,et al.  Single-Molecule Kinetics of Interfacial Electron Transfer , 1997 .

[115]  Jia-Hung Tsai,et al.  Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. , 2009, ACS nano.

[116]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[117]  Licheng Sun,et al.  Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. , 2010, Chemical communications.

[118]  K. Kalyanasundaram Photochemistry of Polypyridine and Porphyrin Complexes , 1992 .

[119]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[120]  A. J. Frank,et al.  Artificial analogues of the oxygen-evolving complex in photosynthesis: the oxo-bridged ruthenium dimer L2(H2O)RuIII-O-RuIII(H2O)L2, L=2,2'-bipyridyl-4,4'-dicarboxylate , 1989 .

[121]  Antoni Llobet,et al.  Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. , 2009, Accounts of chemical research.

[122]  Ke-Jian Jiang,et al.  A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. , 2006, Chemical communications.

[123]  V. Batista,et al.  Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. , 2003, Journal of the American Chemical Society.

[124]  N. M. Iha,et al.  Metal complex sensitizers in dye-sensitized solar cells , 2004 .

[125]  D. Gamelin,et al.  Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. , 2010, Journal of the American Chemical Society.

[126]  Hideki Kato,et al.  Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium , 2002 .

[127]  Anthony Harriman,et al.  Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions , 1988 .

[128]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[129]  Michael Grätzel,et al.  Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. , 2010, Angewandte Chemie.

[130]  S. Zakeeruddin,et al.  High‐Efficiency and Stable Mesoscopic Dye‐Sensitized Solar Cells Based on a High Molar Extinction Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte , 2007 .

[131]  D. Tryk,et al.  Electron Transfer from the Porphyrin S2 State in a Zinc Porphyrin-Rhenium Bipyridyl Dyad having Carbon Dioxide Reduction Activity† , 2009 .

[132]  C. Bignozzi,et al.  Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors , 2004 .

[133]  Lionel R Milgrom,et al.  Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. , 2002, Chemical communications.

[134]  Peng Wang,et al.  A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. , 2005, Journal of the American Chemical Society.

[135]  Hidetoshi Miura,et al.  High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. , 2008, Chemical communications.

[136]  V. Batista,et al.  Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors. , 2005, Journal of the American Chemical Society.

[137]  T. Mallouk,et al.  Photocatalytic Water Oxidation in a Buffered Tris(2,2‘-bipyridyl)ruthenium Complex-Colloidal IrO2 System , 2000 .

[138]  C. Creutz,et al.  Reaction of tris(bipyridine)ruthenium(III) with hydroxide and its application in a solar energy storage system. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Emilio Palomares,et al.  Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. , 2005, The journal of physical chemistry. B.

[140]  T. Lian,et al.  Electron-transfer dynamics from Ru polypyridyl complexes to In2O3 nanocrystalline thin films. , 2006, The journal of physical chemistry. B.

[141]  J. K. Hurst,et al.  Detection and mechanistic relevance of transient ligand radicals formed during [Ru(bpy)2(OH2)]2O4+-catalyzed water oxidation. , 2008, Journal of the American Chemical Society.

[142]  Clyde W. Cady,et al.  Ultrafast Photooxidation of Mn(II)−Terpyridine Complexes Covalently Attached to TiO2 Nanoparticles , 2007 .

[143]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[144]  Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells , 2009 .

[145]  C. Yeh,et al.  Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate , 2009 .

[146]  John B. Asbury,et al.  Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2 in Solution and on Nanocrystalline TiO2 and Al2O3 Thin Films , 1999 .

[147]  Robert C. Snoeberger,et al.  Interfacial electron transfer in TiO(2) surfaces sensitized with Ru(II)-polypyridine complexes. , 2009, The journal of physical chemistry. A.

[148]  V. Yachandra,et al.  Visible light-induced electron transfer from di-mu-oxo-bridged dinuclear Mn complexes to Cr centers in silica nanopores. , 2008, Journal of the American Chemical Society.

[149]  T. Viseu,et al.  Optical and Photophysical Studies on Porphyrin Doped TiO2 Matrixes , 2002 .

[150]  Hidetoshi Miura,et al.  High‐Efficiency Organic‐Dye‐ Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness , 2006 .

[151]  Alexandre Haefelé,et al.  Borondipyrromethene dyes with pentane-2,4-dione anchors. , 2010, Organic letters.

[152]  K. Kadish,et al.  Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. , 2005, Journal of the American Chemical Society.

[153]  D. Klug,et al.  The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. , 2011, Journal of the American Chemical Society.

[154]  Steven J. Konezny,et al.  Fluctuation-Induced Tunneling Conductivity in Nanoporous TiO2 Thin Films , 2011 .

[155]  A. Moore,et al.  Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad , 1997 .

[156]  M. Bonn,et al.  Picosecond Electron Injection Dynamics in Dye-Sensitized Oxides in the Presence of Electrolyte , 2011 .

[157]  H. Gerischer,et al.  ELECTROCHEMICAL TECHNIQUES FOR THE STUDY OF PHOTOSENSITIZATION * , 1972 .

[158]  I. Romero,et al.  Ru-hbpp-based water-oxidation catalysts anchored on conducting solid supports. , 2008, Angewandte Chemie.

[159]  T. Moore,et al.  Artificial Photosynthetic Reaction Centers with Porphyrins as Primary Electron Acceptors , 2004 .

[160]  A. Shanzer,et al.  Controlling the Energy and Electron Transfer in a Novel Ruthenium Bipyridyl Complex: An ESR Study , 2001 .

[161]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[162]  John B. Asbury,et al.  Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films , 2001 .

[163]  P. Christensen,et al.  Redox reactions with colloidal metal oxides. Comparison of radiation-generated and chemically generated RuO2·2H2O , 1987 .

[164]  V. Sundström,et al.  Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)2(NCS)2 into Nanocrystalline TiO2 Thin Films , 2002 .

[165]  G. Scorrano,et al.  Photo-induced water oxidation with tetra-nuclear ruthenium sensitizer and catalyst: a unique 4 x 4 ruthenium interplay triggering high efficiency with low-energy visible light. , 2010, Chemical communications.

[166]  Clyde W. Cady,et al.  Functional Models for the Oxygen-Evolving Complex of Photosystem II. , 2008, Coordination chemistry reviews.

[167]  Matthew C. Beard,et al.  Carrier Localization and Cooling in Dye-Sensitized Nanocrystalline Titanium Dioxide , 2002 .

[168]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[169]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[170]  S. Punchihewa,et al.  Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates , 1991 .

[171]  G. Brudvig,et al.  A functional model for O-O bond formation by the O2-evolving complex in photosystem II. , 1999, Science.

[172]  Rainer Eichberger,et al.  Role of molecular anchor groups in molecule-to-semiconductor electron transfer. , 2006, The journal of physical chemistry. B.

[173]  T. Lian,et al.  Bridge Length-Dependent Ultrafast Electron Transfer from Re Polypyridyl Complexes to Nanocrystalline TiO2 Thin Films Studied by Femtosecond Infrared Spectroscopy , 2000 .

[174]  Jae Hong Kim,et al.  Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. , 2011, Chemical communications.

[175]  Jiaguo Yu,et al.  Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays , 2009 .

[176]  J. Zen,et al.  Nafion–RuO2–Ru(bpy)32+ composite electrodes for efficient electrocatalytic water oxidation , 2000 .

[177]  I. Sazanovich,et al.  Excited-state energy-transfer dynamics of self-assembled imine-linked porphyrin dyads. , 2003, Inorganic chemistry.

[178]  Anders Hagfeldt,et al.  Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells , 2012 .

[179]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[180]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[181]  Ryuhei Nakamura,et al.  Visible light-driven water oxidation by Ir oxide clusters coupled to single Cr centers in mesoporous silica. , 2006, Journal of the American Chemical Society.

[182]  William Stier,et al.  Thermal effects in the ultrafast photoinduced electron transfer from a molecular donor anchored to a semiconductor acceptor , 2002 .

[183]  Donald Fitzmaurice,et al.  Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents , 1993 .

[184]  Neil Robertson,et al.  Optimizing dyes for dye-sensitized solar cells. , 2006, Angewandte Chemie.

[185]  Anthony K. Burrell,et al.  Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell , 2004 .

[186]  Y. Geletii,et al.  Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. , 2009, Journal of the American Chemical Society.

[187]  V. Sundström,et al.  Synthesis and characterization of dinuclear ruthenium complexes covalently linked to Ru(II) tris-bipyridine: an approach to mimics of the donor side of photosystem II. , 2005, Chemistry.