Computationally-efficient modeling of inelastic single crystal responses via anisotropic yield surfaces: Applications to shape memory alloys

[1]  Wael Zaki,et al.  A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain , 2017 .

[2]  K. Bhattacharya,et al.  A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation , 2016 .

[3]  G. Chatzigeorgiou,et al.  Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading , 2016 .

[4]  G. Kang,et al.  A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals , 2015 .

[5]  A. Menzel,et al.  An energy-barrier-based computational micro-sphere model for phase-transformations interacting with plasticity , 2015 .

[6]  Farhoud Kabirian,et al.  Anisotropic yield criteria in σ–τ stress space for materials with yield asymmetry , 2015 .

[7]  G. Chatzigeorgiou,et al.  Phase Transformation of Anisotropic Shape Memory Alloys: Theory and Validation in Superelasticity , 2015, Shape Memory and Superelasticity.

[8]  Etienne Patoor,et al.  Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests , 2015 .

[9]  A. Menzel,et al.  A kinematically-enhanced relaxation scheme for the modeling of displacive phase transformations , 2015 .

[10]  P. Houtte,et al.  Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification , 2015 .

[11]  Wael Zaki,et al.  Time Integration and Assessment of a Model for Shape Memory Alloys Considering Multiaxial Nonproportional , 2015 .

[12]  G. Kang,et al.  Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation , 2014 .

[13]  Dimitris C. Lagoudas,et al.  Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys , 2014 .

[14]  K. Bhattacharya,et al.  Interplay of martensitic phase transformation and plastic slip in polycrystals , 2013 .

[15]  Hiroshi Hamasaki,et al.  A user-friendly 3D yield function to describe anisotropy of steel sheets , 2013 .

[16]  K. Chung,et al.  Consistency condition of isotropic–kinematic hardening of anisotropic yield functions with full isotropic hardening under monotonously proportional loading , 2013 .

[17]  L. Brinson,et al.  Measurement of elastic constants of monoclinic nickel-titanium and validation of first principles calculations , 2013 .

[18]  Jouko Teeriaho,et al.  An extension of a shape memory alloy model for large deformations based on an exactly integrable Eulerian rate formulation with changing elastic properties , 2013 .

[19]  B. Piotrowski,et al.  Determination of the Characteristic Parameters of Tension-Compression Asymmetry of Shape Memory Alloys Using Full-Field Measurements , 2013 .

[20]  Petr Šittner,et al.  Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings , 2012 .

[21]  Haowen Liu,et al.  Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion , 2012 .

[22]  Andreas Menzel,et al.  Implementation of numerical integration schemes for the simulation of magnetic SMA constitutive response , 2012 .

[23]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[24]  A. Menzel,et al.  Partially relaxed energy potentials for the modelling of microstructures – application to shape memory alloys , 2012 .

[25]  Y. Chemisky,et al.  Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation , 2011 .

[26]  Reza Naghdabadi,et al.  A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys , 2011 .

[27]  D. Lagoudas,et al.  Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys , 2009 .

[28]  W. Lai,et al.  Introduction to Continuum Mechanics , 2009 .

[29]  Jeong Whan Yoon,et al.  Anisotropic hardening and non-associated flow in proportional loading of sheet metals , 2009 .

[30]  Jeong Whan Yoon,et al.  On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming , 2008 .

[31]  Christian Lexcellent,et al.  Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys , 2008 .

[32]  Stefanie Reese,et al.  Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation , 2008 .

[33]  L. Brinson,et al.  A three-dimensional phenomenological model for martensite reorientation in shape memory alloys , 2007 .

[34]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[35]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[36]  Christian Lexcellent,et al.  About modelling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions , 2006 .

[37]  Frédéric Barlat,et al.  Linear transfomation-based anisotropic yield functions , 2005 .

[38]  Frédéric Barlat,et al.  A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals , 2004 .

[39]  Panayiotis Papadopoulos,et al.  Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape‐memory alloys , 2004 .

[40]  Frédéric Barlat,et al.  Application of the theory of representation to describe yielding of anisotropic aluminum alloys , 2003 .

[41]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[42]  F. Montheillet,et al.  A texture based continuum approach for predicting the plastic behaviour of rolled sheet , 2003 .

[43]  D. McDowell,et al.  Transformation Surfaces of a Textured Pseudoelastic Polycrystalline Cu-Zn-Al Shape Memory Alloy , 2002 .

[44]  M. Pitteri,et al.  Continuum Models for Phase Transitions and Twinning in Crystals , 2002 .

[45]  Frédéric Barlat,et al.  Generalization of Drucker's Yield Criterion to Orthotropy , 2001 .

[46]  Christian Miehe,et al.  A multi-variant martensitic phase transformation model: formulation and numerical implementation , 2001 .

[47]  T. Shield,et al.  Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys , 1999 .

[48]  Wei Min Huang,et al.  “Yield” surfaces of shape memory alloys and their applications , 1999 .

[49]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[50]  T. Shield,et al.  Symmetry and microstructure in martensites , 1998 .

[51]  Miinshiou Huang,et al.  A Multivariant model for single crystal shape memory alloy behavior , 1998 .

[52]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[53]  Ferdinando Auricchio,et al.  Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior , 1997 .

[54]  R. James,et al.  Analysis of Microstructures in Cu-14.0%Al-3.9%Ni by Energy Minimization , 1995 .

[55]  T. Buchheit,et al.  Modeling the effects of stress state and crystal orientation on the stress-induced transformation of NiTi single crystals , 1994 .

[56]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[57]  Kaushik Bhattacharya,et al.  Comparison of the geometrically nonlinear and linear theories of martensitic transformation , 1993 .

[58]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[59]  Shuichi Miyazaki,et al.  Crystallography of martensitic transformation in TiNi single crystals , 1987 .

[60]  J. Boehler,et al.  Applications of Tensor Functions in Solid Mechanics , 1987 .

[61]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[62]  Shuichi Miyazaki,et al.  The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals , 1984 .

[63]  Morton E. Gurtin,et al.  Two-phase deformations of elastic solids , 1983 .

[64]  R. Hill Theoretical plasticity of textured aggregates , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  K. Shimizu,et al.  Crystal structure and internal defects of equiatomic TiNi martensite , 1971 .

[66]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[67]  G. F. Smith On the yield condition for anisotropic materials , 1962 .

[68]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  S. Padula,et al.  On the modeling of the thermo-mechanical responses of four different classes of NiTi-based shape memory materials using a general multi-mechanism framework , 2015 .

[70]  J. Pokluda,et al.  Elastic Constants of Austenitic and Martensitic Phases of NiTi Shape Memory Alloy , 2010 .

[71]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[72]  Y. Yao,et al.  Melt-mediated laser crystallization of thin film NiTi shape memory alloys , 2007 .

[73]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[74]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[75]  Qingping Sun,et al.  On Deformation of A-M Interface in Single Crystal Shape Memory Alloys and Some Related Issues , 1999 .

[76]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[77]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[78]  M. J. Sewell Maximum and minimum principles: References , 1987 .

[79]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[80]  Liu I-Shih On representations of anisotropic invariants , 1982 .

[81]  D. A. Smith,et al.  The crystallography of the martensitic transformation in equiatomic nickel-titanium , 1981 .

[82]  C. M. Wayman,et al.  Introduction to the crystallography of martensitic transformations , 1964 .

[83]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[84]  R. Hill The mathematical theory of plasticity , 1950 .

[85]  K. Bhattacharya,et al.  Institute of Physics Publishing Smart Materials and Structures a Micromechanics Inspired Constitutive Model for Shape-memory Alloys: the One-dimensional Case , 2022 .