Harmonic differential forms for pseudo-reflection groups I. Semi-invariants

We give a type-independent construction of an explicit basis for the semi-invariant harmonic differential forms of an arbitrary pseudo-reflection group in characteristic zero. Our "top-down" approach uses the methods of Cartan's exterior calculus and is in some sense dual to related work of Solomon, Orlik--Solomon, and Shepler describing (semi-)invariant differential forms. We apply our results to a recent conjecture of Zabrocki which provides a representation theoretic-model for the Delta conjecture of Haglund--Remmel--Wilson in terms of a certain non-commutative coinvariant algebra for the symmetric group. In particular, we verify the alternating component of a specialization of Zabrocki's conjecture.

[1]  A. Garsia,et al.  A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .

[2]  James Haglund,et al.  Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture , 2016, 1609.07575.

[3]  Joshua P. Swanson,et al.  Harmonic differential forms for pseudo-reflection groups II. Bi-degree bounds , 2021, Combinatorial Theory.

[5]  M. Broué Introduction to Complex Reflection Groups and Their Braid Groups , 2010 .

[6]  James Haglund,et al.  The Delta Conjecture , 2015, Discrete Mathematics & Theoretical Computer Science.

[7]  C. Chevalley Invariants of Finite Groups Generated by Reflections , 1955 .

[8]  Richard P. Stanley,et al.  Relative invariants of finite groups generated by pseudoreflections , 1977 .

[9]  Mark Haiman,et al.  Macdonald Polynomials and Geometry , 1999 .

[10]  A. V. Shepler,et al.  Invariant theory for coincidental complex reflection groups , 2019, Mathematische Zeitschrift.

[11]  M. Benard Schur indices and splitting fields of the unitary reflection groups , 1976 .

[12]  Sabrina Hirsch,et al.  Reflection Groups And Coxeter Groups , 2016 .

[13]  Joshua P. Swanson On the Existence of Tableaux with Given Modular Major Index , 2017, 1701.04963.

[14]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[15]  Semiinvariants of Finite Reflection Groups , 1998, math/9811051.

[16]  A. V. Shepler Generalized Exponents and Forms , 2005 .

[17]  P. Orlik,et al.  Unitary reflection groups and cohomology , 1980 .

[18]  François Bergeron,et al.  Algebraic Combinatorics and Coinvariant Spaces , 2009 .

[19]  Richard P. Stanley,et al.  Invariants of finite groups and their applications to combinatorics , 1979 .

[20]  A. Garsia,et al.  On certain graded Sn-modules and the q-Kostka polynomials , 1992 .

[21]  Alternating super-polynomials and super-coinvariants of finite reflection groups , 2019, 1908.00196.

[22]  M. Zabrocki A module for the Delta conjecture. , 2019, 1902.08966.

[23]  A Combinatorial Model for the Decomposition of Multivariate Polynomial Rings as $S_n$-Modules , 2019, Electron. J. Comb..

[24]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[25]  A. V. Shepler,et al.  Invariant derivations and differential forms for reflection groups , 2016, Proceedings of the London Mathematical Society.

[26]  B. Rhoades,et al.  Lefschetz Theory for Exterior Algebras and Fermionic Diagonal Coinvariants , 2020, International Mathematics Research Notices.

[27]  Frank Wannemaker,et al.  Arrangements Of Hyperplanes , 2016 .

[28]  Louis Solomon Invariants of Finite Reflection Groups , 1963, Nagoya mathematical journal.

[29]  Allan Clark,et al.  The realization of polynomial algebras as cohomology rings. , 1974 .

[30]  Richard Kane,et al.  Reflection Groups and Invariant Theory , 2020 .

[31]  A. Wilson,et al.  Vandermondes in superspace , 2019, Transactions of the American Mathematical Society.

[32]  Mark Haiman,et al.  Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .

[33]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[34]  Invariants of Finite Reflection Groups , 1960, Canadian Journal of Mathematics.