Almost sure localization of the eigenvalues in a Gaussian information plus noise model - Application to the spiked models

Let $S$ be a $M$ times $N$ random matrix defined by $S = B + \sigma W$ where $B$ is a uniformly bounded deterministic matrix and where $W$ is an independent identically distributed complex Gaussian matrix with zero mean and variance $1/N$ entries. The purpose of this paper is to study the almost sure location of the eigenvalues of the Gram matrix $SS^*$ when $M$ and $N$ converge to infinity such that the ratio $M/N$ converges towards a constant $c > 0$. The results are used in order to derive, using an alternative approach, known results concerning the behavior of the largest eigenvalues of $SS^*$ when the rank of $B$ remains fixed and $M$ and $N$ converge to infinity.

[1]  K. Fan,et al.  Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Cartan,et al.  Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes , 1961 .

[3]  Evgenii A. Novikov,et al.  Functionals and the random-force method in turbulence theory , 1965 .

[4]  Louis H. Y. Chen An inequality for the multivariate normal distribution , 1982 .

[5]  Garry Tamlyn,et al.  Music , 1993 .

[6]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[7]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[8]  J. W. Silverstein,et al.  EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .

[9]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[10]  V. Girko,et al.  Theory of stochastic canonical equations , 2001 .

[11]  Uffe Haagerup,et al.  A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .

[12]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[13]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[14]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices , 2005 .

[15]  C. Donati-Martin,et al.  Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.

[16]  Leonid Pastur,et al.  A Simple Approach to the Global Regime of Gaussian Ensembles of Random Matrices , 2005 .

[17]  W. Hachem,et al.  Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.

[18]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[19]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .

[20]  Xavier Mestre,et al.  MUSIC, G-MUSIC, and Maximum-Likelihood Performance Breakdown , 2008, IEEE Transactions on Signal Processing.

[21]  Z. Bai,et al.  Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.

[22]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[23]  Xavier Mestre,et al.  Modified Subspace Algorithms for DoA Estimation With Large Arrays , 2008, IEEE Transactions on Signal Processing.

[24]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[25]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[26]  C. Donati-Martin,et al.  Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices , 2010, 1006.3684.

[27]  Boaz Nadler,et al.  Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator , 2010, IEEE Transactions on Signal Processing.

[28]  Raj Rao Nadakuditi,et al.  The singular values and vectors of low rank perturbations of large rectangular random matrices , 2011, J. Multivar. Anal..

[29]  Philippe Loubaton,et al.  Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case , 2010, IEEE Transactions on Information Theory.