Almost sure localization of the eigenvalues in a Gaussian information plus noise model - Application to the spiked models
暂无分享,去创建一个
[1] K. Fan,et al. Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators. , 1951, Proceedings of the National Academy of Sciences of the United States of America.
[2] H. Cartan,et al. Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes , 1961 .
[3] Evgenii A. Novikov,et al. Functionals and the random-force method in turbulence theory , 1965 .
[4] Louis H. Y. Chen. An inequality for the multivariate normal distribution , 1982 .
[5] Garry Tamlyn,et al. Music , 1993 .
[6] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .
[7] J. W. Silverstein,et al. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .
[8] J. W. Silverstein,et al. EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .
[9] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[10] V. Girko,et al. Theory of stochastic canonical equations , 2001 .
[11] Uffe Haagerup,et al. A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .
[12] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[13] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[14] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices , 2005 .
[15] C. Donati-Martin,et al. Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.
[16] Leonid Pastur,et al. A Simple Approach to the Global Regime of Gaussian Ensembles of Random Matrices , 2005 .
[17] W. Hachem,et al. Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.
[18] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[19] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[20] Xavier Mestre,et al. MUSIC, G-MUSIC, and Maximum-Likelihood Performance Breakdown , 2008, IEEE Transactions on Signal Processing.
[21] Z. Bai,et al. Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.
[22] Xavier Mestre,et al. Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.
[23] Xavier Mestre,et al. Modified Subspace Algorithms for DoA Estimation With Large Arrays , 2008, IEEE Transactions on Signal Processing.
[24] C. Donati-Martin,et al. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.
[25] Raj Rao Nadakuditi,et al. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.
[26] C. Donati-Martin,et al. Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices , 2010, 1006.3684.
[27] Boaz Nadler,et al. Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator , 2010, IEEE Transactions on Signal Processing.
[28] Raj Rao Nadakuditi,et al. The singular values and vectors of low rank perturbations of large rectangular random matrices , 2011, J. Multivar. Anal..
[29] Philippe Loubaton,et al. Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case , 2010, IEEE Transactions on Information Theory.