Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3−2x/C as cathode for sodium-ion batteries

A composite made of a mixed-valence sodium–vanadium fluorophosphate and 6.4% wt. carbon, Na3V2O2x(PO4)2F3−2x/C (0 < x < 1), has been prepared. Structural and magnetic characterization confirmed the +3/+4 oxidation state of vanadium in the phase. Morphological and texture analyses showed that carbon forms a network surrounding the particles, leading to a mesoporous composite with a high specific area of 67 m2 g−1. Electrochemical characterization conducted in Swagelok cells by cyclic voltammetry and galvanostatic cycling indicated that sodium extraction/insertion proceeds through a complex mechanism in two voltage pseudo-plateaux at 3.6 and 4.1 V vs. Na/Na+. Rate capability of the material ranges from specific capacities of 100 mAh g−1 at C/20 to 75 mAh g−1 at 5C. Cycling stability at 1C showed coulombic efficiency higher than 99% and capacity retention of 95% after 200 cycles.

[1]  A. Hémon-Ribaud,et al.  Phase Transitions in the Na3M2(PO4)2F3 Family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies , 1999 .

[2]  D. C. Johnston,et al.  Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5 , 2011, 1104.4017.

[3]  Pierre Kubiak,et al.  High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x , 2012 .

[4]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[5]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[6]  Jean-Marie Tarascon,et al.  Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5 , 2006 .

[7]  S. Okada,et al.  Cathode properties of Na3M2(PO4) 2F3 [M = Ti, Fe, V] for sodium-ion batteries , 2013 .

[8]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[9]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[10]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[11]  B. Scrosati,et al.  Nanotechnology for the progress of lithium batteries R&D , 2004 .

[12]  Jeremy Barker,et al.  The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3 , 2006 .

[13]  J. Tarascon,et al.  Metal oxides as negative electrode materials in Li-ion cells , 2002 .

[14]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[15]  M. Wohlfahrt‐Mehrens,et al.  TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. , 2011, Small.

[16]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[17]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[18]  P. Bruce,et al.  Influence of size on the rate of mesoporous electrodes for lithium batteries. , 2010, Journal of the American Chemical Society.

[19]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.