Euclidean minimum spanning trees and bichromatic closest pairs

We present an algorithm to compute a Euclidean minimum spanning tree of a given setS ofN points inEd in timeO(Fd(N,N) logdN), whereFd(n,m) is the time required to compute a bichromatic closest pair amongn red andm green points inEd. IfFd(N,N)=Ω(N1+ε), for some fixed ɛ>0, then the running time improves toO(Fd(N,N)). Furthermore, we describe a randomized algorithm to compute a bichromatic closest pair in expected timeO((nm logn logm)2/3+m log2n+n log2m) inE3, which yields anO(N4/3 log4/3N) expected time, algorithm for computing a Euclidean minimum spanning tree ofN points inE3. Ind≥4 dimensions we obtain expected timeO((nm)1−1/([d/2]+1)+ε+m logn+n logm) for the bichromatic closest pair problem andO(N2−2/([d/2]+1)ε) for the Euclidean minimum spanning tree problem, for any positive ɛ.

[1]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[2]  Otfried Cheong,et al.  Euclidean minimum spanning trees and bichromatic closest pairs , 1990, SCG '90.

[3]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[4]  Robert E. Tarjan,et al.  Scaling and related techniques for geometry problems , 1984, STOC '84.

[5]  Bernard Chazelle,et al.  How to Search in History , 1983, Inf. Control..

[6]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[7]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[8]  Pravin M. Vaidya A fast approximation for minimum spanning trees in k-dimensional space , 1984, FOCS.

[9]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[10]  Roberto Tamassia,et al.  Efficient Spatial Point Location (Extended Abstract) , 1989, WADS.

[11]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[12]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[13]  Kenneth L. Clarkson Fast expected-time and approximation algorithms for geometric minimum spanning trees , 1984, STOC '84.

[14]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[15]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[16]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[17]  Martin E. Dyer,et al.  A randomized algorithm for fixed-dimensional linear programming , 1989, Math. Program..

[18]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).