Computational mechanics modelling of nanoparticle-reinforced composite materials across the length scales
暂无分享,去创建一个
Sergey A. Lurie | David Hui | Maksim V. Kireitseu | Vladimir I. Zubov | Geoffrey Tomlinson | Liya Bochkareva | Richard Williams | G. Tomlinson | V. Zubov | D. Hui | Richard A. Williams | S. Lurie | M. Kireitseu | L. Bochkareva | Sergey A. Lurie | Maksim V. Kireitseu
[1] D. Burton,et al. Novel applications of carbon nanofibers , 2007 .
[2] H. Altenbach,et al. Continuum Mechanics Approach and Computational Modelling of Submicrocrystalline and Nanoscale Materials , 2005 .
[3] S. Lurie,et al. The application of the multiscale models for description of the dispersed composites , 2005 .
[4] S. Lurie,et al. Nanomechanical modeling of the nanostructures and dispersed composites , 2003 .
[5] Philippe H. Geubelle,et al. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .
[6] L. Nicholson,et al. Equivalent-Continuum Modeling With Application to Carbon Nanotubes , 2002 .
[7] Peter T. Cummings,et al. Applications of Molecular and Materials Modeling , 2002 .
[8] N.,et al. A PHENOMENOLOGICAL THEORY FOR STRAIN GRADIENT EFFECTS IN PLASTICITY , 2002 .
[9] G. Odegard,et al. Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations , 2002 .
[10] T. Chou,et al. Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .
[11] G R Tomlinson,et al. Damping characteristics of particle dampers—some preliminary results , 2001 .
[12] M. Yu. NANOSCOPICS OF DISLOCATIONS AND DISCLINATIONS IN GRADIENT ELASTICITY , 2000 .
[13] G. Tibbetts,et al. Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices , 1999 .
[14] Huajian Gao,et al. Mechanism-based strain gradient plasticity— I. Theory , 1999 .
[15] F. Montheillet,et al. A generalized self-consistent method for solids containing randomly oriented spheroidal inclusions , 1999 .
[16] E. Aifantis. Strain gradient interpretation of size effects , 1999 .
[17] P. Harris. CARBON NANOTUBES AND RELATED STRUCTURES , 1999 .
[18] Charles L. Tucker,et al. Stiffness Predictions for Unidirectional Short-Fiber Composites: Review and Evaluation , 1999 .
[19] R. Phillips,et al. Multiscale modeling in the mechanics of materials , 1998 .
[20] N. Fleck,et al. Strain gradient plasticity , 1997 .
[21] E. Aifantis. Gradient Effects at Macro, Micro, and Nano Scales , 1994 .
[22] Joseph B. Keller,et al. Effective elasticity tensor of a periodic composite , 1984 .
[23] Dominic G.B. Edelen,et al. A Gauge Theory of Dislocations and Disclinations , 1983 .
[24] Sia Nemat-Nasser,et al. On composites with periodic structure , 1982 .
[25] Toshio Mura,et al. Micromechanics of defects in solids , 1982 .
[26] Yu. G. Evtushenko,et al. A library of programs for solving optimal control problems , 1979 .
[27] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[28] S. Umekawa,et al. Thermal Expansions of Heterogeneous Solids Containing Aligned Ellipsoidal Inclusions , 1974 .
[29] K. Tanaka,et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .
[30] R. Dewit. Theory of Disclinations: III. Continuous and Discrete Disclinations in Isotropic Elasticity. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.
[31] R. Dewit. Theory of Disclinations: II. Continuous and Discrete Disclinations in Anisotropic Elasticity. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.
[32] B. Budiansky. On the elastic moduli of some heterogeneous materials , 1965 .
[33] R. D. Mindlin. Micro-structure in linear elasticity , 1964 .
[34] R. Toupin,et al. Theories of elasticity with couple-stress , 1964 .
[35] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.