Polarization Dependent Water Adsorption on the Lithium Niobate Z-Cut Surfaces

The effect of ferroelectric poling on the water adsorption characteristics of lithium niobate Z-cut surfaces is investigated by ab initio calculations. Thereby we model the adsorption of H2O monomers, small water clusters and water thin films. The adsorption configuration and energy are determined as a function of the surface coverage on both the positive and negative LiNbO3(0001) surfaces. Thereby polarization-dependent adsorption energies, geometries and equilibrium coverages are found. The different affinity of water to the two surfaces is explained in terms of different bonding scenarios as well as the electrostatic interactions between the substrate and the polar molecules. Surface phase diagrams for the Z-cuts in equilibrium with water are predicted from atomistic thermodynamics.

[1]  K. Nassau,et al.  Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching , 1966 .

[2]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[3]  D. Bonnell,et al.  The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO3(0001) , 2009 .

[4]  A. Rappe,et al.  Influence of ferroelectric polarization on the equilibrium stoichiometry of lithium niobate (0001) surfaces. , 2008, Physical review letters.

[5]  Kazunori Sato,et al.  Polarization effects upon adsorptive and catalytic properties. 1. Carbon monoxide oxidation over palladium deposited on lithium niobate (LiNbO3) ferroelectrics , 1984 .

[6]  O. Dulub,et al.  Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. , 2005, Physical review letters.

[7]  J P Carrico,et al.  Thermally stimulated field emission from pyroelectric LiNbO3 , 1974 .

[8]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[9]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[10]  A. Gruverman,et al.  Polarization-dependent electron affinity of LiNbO3 surfaces , 2004 .

[11]  W. Schmidt,et al.  Polarization-dependent methanol adsorption on lithium niobate Z-cut surfaces , 2012 .

[12]  A. Michaelides,et al.  Ice nanoclusters at hydrophobic metal surfaces. , 2007, Nature materials.

[13]  E. Soergel,et al.  Quantitative measurement of the surface charge density , 2009, 1009.1902.

[14]  B. D. Kay,et al.  The adsorption and desorption of water on single crystal MgO(100): The role of surface defects , 1996 .

[15]  E. Altman,et al.  Effect of ferroelectric poling on the adsorption of 2-propanol on LiNbO3(0001) , 2007 .

[16]  G. Namkoong,et al.  III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy , 2005 .

[17]  D. Herschbach,et al.  Influence of Vibrations on Molecular Structure Determinations. II. Average Structures Derived from Spectroscopic Data , 1962 .

[18]  W. Schmidt,et al.  Water adsorption on the alpha-Al2O3(0001) surface , 2009 .

[19]  Igor Lubomirsky,et al.  Water Freezes Differently on Positively and Negatively Charged Surfaces of Pyroelectric Materials , 2010, Science.

[20]  M. Okano,et al.  Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. , 2001, Physical review letters.

[21]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[22]  W. Schmidt,et al.  Atomic-resolution imaging of the polar (000{1¯}) surface of LiNbO{3} in aqueous solution by frequency modulation atomic force microscopy , 2012 .

[23]  A. Rappe,et al.  Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.

[24]  L. Giordano,et al.  Partial Dissociation of Water Molecules in the (3×2) Water Monolayer Deposited on the MgO (100) Surface , 1998 .

[25]  Steve Dunn,et al.  Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures , 2002 .

[26]  Wolf Gero Schmidt,et al.  Lithium niobateX-cut,Y-cut, andZ-cut surfaces fromab initiotheory , 2010 .

[27]  E. Wang,et al.  Water adsorption on metal surfaces: A general picture from density functional theory studies , 2004 .

[28]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[29]  W. Schmidt,et al.  Polarization-dependent water adsorption on the LiNbO 3 (0001) surface , 2012 .

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.