THE EXTRACTIVE METALLURGY OF COPPER FROM CABEZO JURÉ, HUELVA, SPAIN: CHEMICAL AND MINERALOGICAL STUDY OF SLAGS DATED TO THE THIRD MILLENIUM B.C.

Les fouilles archeologiques a Cabezo Jure, pres d'Alosno, province de Huelva. dans le sud-ouest de l'Espagne, ont revele recemment les vestiges d'une ancienne communaute de travailleurs specialises dans la metallurgie du cuivre. Ces gens etaient actifs entre 2873 et 2274 avant Jesus-Christ, selon les datations calibrees au radiocarbone. L'activite metallurgique se voit dans les debris des fours de traitement de minerai, ainsi qu'une grande quantite de laitier et de produits de cuivre, soit epures ou bien a l'etat brut. Les resultats d'etudes archeologiques, geochimiques, mineralogiques et texturales montrent que l'extraction du cuivre se faisait en deux etapes. Il y avait d'abord une fusion primaire dans un four a temperature relativement elevee (∼1200°C), en presence de roches mafiques utilisees comme fondant. Une epuration ulterieure du metal dans des vaisseaux en ceramique produisait un laitier ayant une composition mineralogique plus simple qu'au stade primaire, dans le four. La proportion des oxydes de cuivre dans les laitiers issus des processus de traitement de minerai et d'epuration temoigne d'une extraction metallurgique tres inefficace, menant a une liberation partielle seulement du cuivre dans le minerai.

[1]  M. Hodson,et al.  A preliminary investigation into mining and smelting impacts on trace element concentrations in the soils and vegetation around Tharsis, SW Spain , 2003, Mineralogical Magazine.

[2]  C. Viti,et al.  The copper slags of the Capattoli Valley, Campiglia Marittima, Italy , 2001 .

[3]  J. Craig ORE-MINERAL TEXTURES AND THE TALES THEY TELL , 2001 .

[4]  V. Ettler,et al.  Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Príbram, Czech Republic , 2001 .

[5]  F. Calvo Tercer milenio antes de nuestra era: relaciones y contradicciones centro/periferia en el valle del Guadalquivir , 2001 .

[6]  Salvador Rovira Lloréns,et al.  Metalurgia del Cu en Cabezo Juré (Alosno, Huelva): estudio mineralógico de escorias del 3 milenio a.n.e. , 2001 .

[7]  T. Tsukada,et al.  Distribution equilibria of Pb and Cu between CaO-SiO2-Al2O3 melts and liquid copper , 2000 .

[8]  Marc Leblanc,et al.  4,500-YEAR-OLD MINING POLLUTION IN SOUTHWESTERN SPAIN: LONG-TERM IMPLICATIONS FOR MODERN MINING POLLUTION , 2000 .

[9]  S. Rovira Una propuesta metodológica para el estudio de la metalurgia prehistórica: el caso de Gorny en la Región de Kargaly (Orenburg, Rusia) , 1999 .

[10]  P. Hayes,et al.  The effect of MgO on liquidus temperatures of fayalite slags , 1999 .

[11]  P. Hayes,et al.  The effect of Al2O3 on liquidus temperatures of fayalite slags , 1999 .

[12]  R. Ramos,et al.  Análisis de procedencia de materias primas en arqueometalurgia de Cu mediante isótopos de Pb. El caso de Cabezo Juré, Alosno, Huelva , 1999 .

[13]  H. Sohn,et al.  Effects of CaO, Al2O3, and MgO additions on the copper solubility, ferric/ferrous ratio, and minor-element behavior of iron-silicate slags , 1998 .

[14]  A. Pelton,et al.  Thermodynamic modelling of the system Al2O3SiO2CaOFeOFe2O3 to predict the flux requirements for coal ash slags , 1998 .

[15]  B. Spiro,et al.  The Filon Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulphide in a thin-skinned tectonic belt , 1997 .

[16]  Joan Martí,et al.  Magmatic Evolution and Tectonic Setting of the Iberian Pyrite Belt Volcanism , 1997 .

[17]  H. Sohn,et al.  Minor-element behavior and iron partition during the cleaning of copper converter slag under reducing conditions , 1997 .

[18]  R. Sáez,et al.  Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt , 1996 .

[19]  Paul T. Craddock,et al.  Early metal mining and production , 1997 .

[20]  B. Cunliffe The Oxford illustrated prehistory of Europe , 1994 .

[21]  F. V. Roldan,et al.  The determination of major oxide and ten trace element concentrations in fifty-eight geochemical reference samples by X-ray spectrometry (WD-FRX) , 1994 .

[22]  B. Frost Chapter 1.INTRODUCTION TO OXYGEN FUGACITY AND ITS PETROLOGIC IMPORTANCE , 1991 .

[23]  D. Lindsley Experimental studies of oxide minerals , 1991 .

[24]  A. Frank,et al.  The cumulation of accumulation: Theses and research agenda for 5000 years of world system history , 1990 .

[25]  R. F. Tylecote,et al.  The early history of metallurgy in Europe , 1987 .

[26]  Ronald-Frank Tylecote,et al.  Experimental smelting techniques: achievements and future , 1985 .

[27]  H. Bachmann The Identification of Slags from Archaeological Sites , 1982 .

[28]  J. S. Huebner,et al.  Pyroxene phase equilibria at low pressure , 1980 .

[29]  C. Langmuir,et al.  A general mixing equation with applications to Icelandic basalts , 1978 .

[30]  J. Madel,et al.  Exploration Practice for Strata-Bound Volcanogenic Sulphide Deposits in the Spanish-Portuguese Pyrite Belt: Geology, Geophysics, and Geochemistry , 1977 .

[31]  A. E. Goresy Chapter 5. OXIDE MINERALS in LUNAR ROCKS , 1976 .

[32]  E. G. Ehlers The interpretation of geological phase diagrams , 1972 .

[33]  G. Morton,et al.  Constitution of bloomery slags: Part I: Roman , 1969 .

[34]  E. F. Osborn,et al.  Experimental data for the system MgO-FeO-Fe 2 O 3 -CaAl 2 Si 2 O 8 -SiO 2 and their petrologic implications , 1966 .

[35]  E. F. Osborn,et al.  Experimental data for the system MgO-FeO-Fe (sub 2) O (sub 3) -CaAl (sub 2) Si (sub 2) O (sub 8) -SiO (sub 2) and their petrologic implications , 1966 .

[36]  H. Eugster,et al.  Stability Relations of the Ferruginous Biotite, Annite , 1962 .