Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on a Shishkin mesh

We analyze the convergence of the multiplicative Schwarz method applied to nonsymmetric linear algebraic systems obtained from discretizations of one-dimensional singularly perturbed convection-diffusion equations by upwind and central finite differences on a Shishkin mesh. Using the algebraic structure of the Schwarz iteration matrices we derive bounds on the infinity norm of the error that are valid from the first step of the iteration. Our bounds for the upwind scheme prove rapid convergence of the multiplicative Schwarz method for all relevant choices of parameters in the problem. The analysis for the central difference is more complicated, since the submatrices that occur are nonsymmetric and sometimes even fail to be M -matrices. Our bounds still prove the convergence of the method for certain parameter choices.

[1]  D. Rose,et al.  Convergence of nested classical iterative methods for linear systems , 1990 .

[2]  W. Hackbusch Elliptic Differential Equations , 1992 .

[3]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[4]  Riaz A. Usmani,et al.  Inversion of Jacobi's tridiagonal matrix , 1994 .

[5]  John J. H. Miller Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions , 1996 .

[6]  HANS-GäRG Roos A note on the conditioning of upwind schemes on Shishkin meshes , 1996 .

[7]  V. B. Andreyev,et al.  A study of difference schemes with the first derivative approximated by a central difference ratio , 1997 .

[8]  P. Farrell,et al.  Schwartz Methods for Singularly Perturbed Convection-Diffusion Problems ∗ , 1998 .

[9]  R. Nabben Two-sided bounds on the inverses of diagonally dominant tridiagonal matrices , 1999 .

[10]  Eugene O'Riordan,et al.  Schwarz Methods for Convection-Diffusion Problems , 2000, NAA.

[11]  JohnM . Miller,et al.  Robust Computational Techniques for Boundary Layers , 2000 .

[12]  Torsten Linß,et al.  Numerical methods on Shishkin meshes for linear convection-diffusion problems , 2001 .

[13]  Michele Benzi,et al.  Algebraic theory of multiplicative Schwarz methods , 2001, Numerische Mathematik.

[14]  Eugene O'Riordan,et al.  A second-order parameter-uniform overlapping Schwarz method for reaction-diffusion problems with boundary layers , 2001 .

[15]  E. O'Riordan,et al.  The convergence of classical schwarz methods applied to convection-diffusion problems with regular boundary layers , 2002 .

[16]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[17]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[18]  Daniel B. Szyld,et al.  The many proofs of an identity on the norm of oblique projections , 2006, Numerical Algorithms.

[19]  Bernard Philippe,et al.  An explicit formulation of the multiplicative Schwarz preconditioner , 2007 .

[20]  Martin J. Gander,et al.  Schwarz Methods over the Course of Time , 2008 .

[21]  M. Benzi,et al.  Some Preconditioning Techniques for Saddle Point Problems , 2008 .

[22]  Natalia Kopteva,et al.  Shishkin meshes in the numerical solution of singularly perturbed differential equations , 2010 .

[23]  Martin J. Gander,et al.  An Optimal Block Iterative Method and Preconditioner for Banded Matrices with Applications to PDEs on Irregular Domains , 2012, SIAM J. Matrix Anal. Appl..

[24]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .