Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry

Asimplifiedapproachtoinvestigatetheout-of-planeresponseofplasmonicnanostructuresusingspectroscopic ellipsometry(SE)ispresented.One-dimensionalself-assembledarraysofAgnanoparticles(NP’s)weregrownon stepped Al2O3(0001), in ultrahigh vacuum, using deposition at a glancing angle. The SE response was measured with the plane of incidence aligned along, and across, the surface steps. From the raw data, an anisotropic surface excess function (ASEF) can be extracted, whose properties depend only on the dielectric function of the NP layer. Three resonances are clearly seen in the ASEF: two in-plane resonances, which correspond to the resonances measured using normal incidence reflection anisotropy spectroscopy, and the out-of-plane resonance. A dipole model is used to simulate the optical response of the NP layer, where the presence of the out-of-plane resonance provides an important additional constraint in developing the model.

[1]  J. McGilp,et al.  In situ characterization of one-dimensional plasmonic Ag nanocluster arrays , 2011 .

[2]  E. Lacaze,et al.  Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles , 2011 .

[3]  Shirui Guo,et al.  Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands. , 2010, Nano letters.

[4]  Lionel Simonot,et al.  Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion , 2009 .

[5]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[6]  J. Aizpurua,et al.  Acousto-plasmonic hot spots in metallic nano-objects. , 2009, Nano letters.

[7]  Dušan Hemzal,et al.  Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives , 2009, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology.

[8]  D. Massabò,et al.  Self-organized metal nanowire arrays with tunable optical anisotropy , 2008 .

[9]  H. Zandbergen,et al.  Plasmon resonance in silver nanoparticles arrays grown by atomic terrace low-angle shadowing. , 2008, Nano letters.

[10]  N. Saucedo-Zeni,et al.  Optical anisotropies of metal clusters supported on a birefringent substrate , 2008 .

[11]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[12]  D. Babonneau,et al.  Self-organized growth and optical properties of silver nanoparticle chains and stripes , 2007 .

[13]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[14]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[15]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[16]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[17]  D. Bedeaux,et al.  Multipolar plasmon resonances in supported silver particles: The case of Ag / α − Al 2 O 3 ( 0001 ) , 2002 .

[18]  B. Poelsema,et al.  Optical Characterization of Thin Colloidal Gold Films by Spectroscopic Ellipsometry , 2002 .

[19]  D. Bedeaux,et al.  Optical Properties of Surfaces , 2002 .

[20]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[21]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[22]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[23]  Santos,et al.  Optical Properties of Ordered As Layers on InP(110) Surfaces. , 1996, Physical review letters.

[24]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[25]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[26]  S. Zollner,et al.  Modelling the optical response of surfaces measured by spectroscopic ellipsometry: application to Si and Ge , 1993 .

[27]  Goodrich,et al.  Fermi velocities in silver: Surface Landau-level resonances. , 1985, Physical review. B, Condensed matter.

[28]  D. Aspnes Surface preparation and characterization by spectroellipsometry: Application to (100)GaAs , 1985 .

[29]  W. Plieth,et al.  Über die bestimmung der optischen konstanten dünnster oberflächenschichten und das problem der schichtdicke , 1977 .

[30]  E. Stern,et al.  Optical constants of some silver alloys , 1975 .

[31]  Akira Kinbara,et al.  Optical effect of the substrate on the anomalous absorption of aggregated silver films , 1974 .

[32]  David E. Aspnes,et al.  Analysis of modulation spectra of stratified media , 1973 .

[33]  S. Yoshida,et al.  Anomalous optical absorption of aggregated silver films , 1973 .

[34]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[35]  B. Ju,et al.  Thin Solid Films , 2009 .

[36]  Pieter G. Kik,et al.  SURFACE PLASMON NANOPHOTONICS , 2007 .

[37]  E. Fort,et al.  Dichroic Thin Films of Silver Nanoparticle Chain Arrays on Facetted Alumina Templates , 2003 .

[38]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[39]  C. B. Carter,et al.  Steps and the structure of the (0001) α-alumina surface , 1997 .

[40]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[41]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .