Conduction-atomic force microscopy study of H2 sensing mechanism in Pd nanoparticles decorated TiO2 nanofilm

In situ conduction-AFM is used to observe room temperature hydrogen gas response mechanism of Pd nanoparticles decorated TiO2 nanofilm. The response mechanism is due to chemical and electronic sensitization of the nanofilm. The nanofilm with thickness ∼5 nm, in range of the wall thickness of a typical TiO2 nanotube, is prepared by atomic layer deposition. For the mechanism study and also for hydrogen sensor applications, this nanofilm with electrical conduction switching from the order of picoampere in air, to ∼0.30 μA in 1000 ppm H2 is an alternative to TiO2 nanotube/nanostructures.

[1]  Minhee Yun,et al.  Investigation of a single Pd nanowire for use as a hydrogen sensor. , 2006, Small.

[2]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[3]  Infrared emission spectroscopic study of the adsorption of oxygen on gas sensors based on polycrystalline metal oxide films , 2001 .

[4]  F. Favier,et al.  Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays , 2001, Science.

[5]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[6]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[7]  Han Gao,et al.  Free-Standing Porous Anodic Alumina Templates for Atomic Layer Deposition of Highly Ordered TiO2 Nanotube Arrays on Various Substrates , 2008 .

[8]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[9]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[10]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[11]  I. Yahia,et al.  Transport properties of polycrystalline TiO2 and Ti2O3 as semiconducting oxides , 2008 .

[12]  U. Roland,et al.  On the nature of spilt-over hydrogen , 1997 .

[13]  Udo Weimar,et al.  Conductance, work function and catalytic activity of SnO2-based gas sensors , 1991 .

[14]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[15]  S. Semancik,et al.  Conductance response of Pd/SnO2 (110) model gas sensors to H2 and O2 , 1990 .

[16]  Haibin Yang,et al.  Synthesis and characterization of TiO2 nanotubes for humidity sensing , 2008 .

[17]  Y. Ujihira,et al.  Mössbauer studies on tin‐bismuth oxide CO selective gas sensor , 1992 .

[18]  Makoto Egashira,et al.  H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode , 2003 .

[19]  Wolfgang Göpel,et al.  SnO2 sensors: current status and future prospects☆ , 1995 .

[20]  Man Sig Lee,et al.  Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent , 2005 .

[21]  A. Pundt,et al.  Metal nanowires and hydrogen loading: An AFM-study , 2008 .

[22]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[23]  Hikaru Kobayashi,et al.  Mechanism of hydrogen sensing by Pd/TiO2 Schottky diodes , 1993 .

[24]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[25]  A. Pundt,et al.  Hydrogen-induced stress in Nb single layers , 1999 .

[26]  In situ diffuse reflectance infrared spectroscopy (DRIFTS) study of the reversibility of CdGeON sensors towards oxygen , 1996 .

[27]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[28]  A. Kolmakov,et al.  Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. , 2005, The journal of physical chemistry. B.

[29]  Andreas Mandelis,et al.  Physics, chemistry, and technology of solid state gas sensor devices , 1993 .

[30]  W. A. Oates,et al.  The Palladium-Hydrogen System , 1991 .

[31]  A. Gaskov,et al.  In SituCoupled Raman and Impedance Measurements of the Reactivity of Nanocrystalline SnO2versus H2S , 1999 .

[32]  S. George,et al.  CO gas sensing by ultrathin tin oxide films grown by atomic layer deposition using transmission FTIR spectroscopy. , 2008, The journal of physical chemistry. A.

[33]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[34]  A. Pundt,et al.  Hydrogen and Pd-clusters , 2004 .

[35]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[36]  M. Gong,et al.  Thick films of copper-titanate resistive humidity sensor , 2005 .

[37]  Toshimasa Matsuoka,et al.  A study on a palladium-titanium oxide Schottky diode as a detector for gaseous components , 1980 .

[38]  Steven M. George,et al.  Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition , 2008 .