Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with $${1 \le q \le 4}$$1≤q≤4
暂无分享,去创建一个
Vladas Sidoravicius | Vincent Tassion | Hugo Duminil-Copin | H. Duminil-Copin | V. Sidoravicius | V. Tassion
[1] Richard Kenyon,et al. Conformal invariance of domino tiling , 1999 .
[2] Wendelin Werner,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .
[3] R. Kenyon,et al. Dominos and the Gaussian Free Field , 2000, math-ph/0002027.
[4] Jean Ruiz,et al. Phases coexistence and surface tensions for the potts model , 1986 .
[5] Allan Sly,et al. Critical Ising on the Square Lattice Mixes in Polynomial Time , 2010, 1001.1613.
[6] L. Russo. A note on percolation , 1978 .
[7] Lahoussine Laanait,et al. Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation , 1991 .
[8] H. Duminil-Copin,et al. Crossing probabilities in topological rectangles for the critical planar FK-Ising model , 2013, 1312.7785.
[9] Nicholas Crawford,et al. Mean-Field Driven First-Order Phase Transitions in Systems with Long-Range Interactions , 2005, math-ph/0501067.
[10] R. B. Potts. Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] The phase transitions of the planar random-cluster and Potts models with $$q \ge 1$$q≥1 are sharp , 2014, 1409.3748.
[12] Conformal invariance of crossing probabilities for the Ising model with free boundary conditions , 2014, 1410.3715.
[13] C. Fortuin,et al. On the random-cluster model: I. Introduction and relation to other models , 1972 .
[14] G. Grimmett,et al. Bond percolation on isoradial graphs: criticality and universality , 2012, 1204.0505.
[15] H. Duminil-Copin,et al. Smirnov's fermionic observable away from criticality , 2010, 1010.0526.
[16] K. Alexander,et al. On weak mixing in lattice models , 1998 .
[17] R. Baxter. Potts model at the critical temperature , 1973 .
[18] S. Smirnov,et al. Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.
[19] Senya Shlosman,et al. First-order phase transitions in large entropy lattice models , 1982 .
[20] H. Duminil-Copin,et al. The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.
[21] Conformally invariant scaling limits: an overview and a collection of problems , 2006, math/0602151.
[22] L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .
[23] C. Newman,et al. Critical percolation exploration path and SLE6: a proof of convergence , 2006, math/0604487.
[24] Alexander M. Polyakov,et al. Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .
[25] Geoffrey Grimmett. The Random-Cluster Model , 2002, math/0205237.
[26] H. Duminil-Copin,et al. The Near-Critical Planar FK-Ising Model , 2011, 1111.0144.
[27] Vladas Sidoravicius,et al. Random Currents and Continuity of Ising Model’s Spontaneous Magnetization , 2013, 1311.1937.
[28] D. Welsh,et al. Percolation probabilities on the square lattice , 1978 .
[29] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[30] H. Kesten. The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .
[31] L. Kadanoff,et al. Disorder variables and para-fermions in two-dimensional statistical mechanics , 1980 .
[32] Clément Hongler,et al. Conformal Invariance of Ising Model Correlations , 2012 .
[33] H. Duminil-Copin,et al. Convergence of Ising interfaces to Schramm's SLE curves , 2013, 1312.0533.
[34] H. Duminil-Copin. Parafermionic observables and their applications , 2015 .
[35] H. Duminil-Copin. Divergence of the correlation length for critical planar FK percolation with 1 ⩽ q ⩽ 4 via parafermionic observables , 2012, 1208.3787.
[36] H. Duminil-Copin. Order/disorder phase transitions: the example of the Potts model , 2015 .
[37] S. Smirnov,et al. Critical percolation: the expected number of clusters in a rectangle , 2009, 0909.4490.
[38] J. Cardy,et al. Holomorphic parafermions in the Potts model and stochastic Loewner evolution , 2006 .
[39] Chen Ning Yang,et al. The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .
[40] First-Order Phase Transition in Potts Models with Finite-Range Interactions , 2006, math-ph/0609051.
[41] R. Baxter. Generalized Ferroelectric Model on a Square Lattice , 1971 .
[42] Holomorphic Parafermions in the Potts model and SLE , 2006, cond-mat/0608496.
[43] Almut Burchard,et al. Holder Regularity and Dimension Bounds for Random Curves , 1998 .
[44] F. Y. Wu. The Potts model , 1982 .
[45] H. Duminil-Copin,et al. A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.
[46] C. Hongler,et al. Ising interfaces and free boundary conditions , 2011, 1108.0643.
[47] Percolation et modèle d'ising , 2009 .
[48] H. Duminil-Copin,et al. Critical point and duality in planar lattice models , 2014 .
[49] Clément Hongler,et al. Conformal invariance of spin correlations in the planar Ising model , 2012, 1202.2838.
[50] Michael Aizenman,et al. On the critical behavior of the magnetization in high-dimensional Ising models , 1986 .
[51] H. Duminil-Copin,et al. A new proof of the sharpness of the phase transition for Bernoulli percolation on $\mathbb Z^d$ , 2015, 1502.03051.
[52] Dmitry Chelkak,et al. Holomorphic Spinor Observables in the Critical Ising Model , 2011, 1105.5709.
[53] Pierre Nolin,et al. Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model , 2011 .
[54] H. Duminil-Copin,et al. On the critical parameters of the q ≤ 4 random-cluster model on isoradial graphs , 2015, 1507.01356.
[55] Stanislav Smirnov,et al. Towards conformal invariance of 2D lattice models , 2007, 0708.0032.
[56] S. Smirnov,et al. Random curves, scaling limits and Loewner evolutions , 2012, 1212.6215.
[57] V. Tassion. Crossing probabilities for Voronoi percolation , 2014, 1410.6773.
[58] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[59] Barry Simon,et al. Correlation inequalities and the decay of correlations in ferromagnets , 1980 .
[60] M. .. Moore. Exactly Solved Models in Statistical Mechanics , 1983 .
[61] H. Duminil-Copin,et al. Universality for the random-cluster model on isoradial graphs , 2017, 1711.02338.