Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with $${1 \le q \le 4}$$1≤q≤4

AbstractThis article studies the planar Potts model and its random-cluster representation. We show that the phase transition of the nearest-neighbor ferromagnetic q-state Potts model on $${\mathbb{Z}^2}$$Z2 is continuous for $${q \in \{2,3,4\}}$$q∈{2,3,4}, in the sense that there exists a unique Gibbs state, or equivalently that there is no ordering for the critical Gibbs states with monochromatic boundary conditions.The proof uses the random-cluster model with cluster-weight $${q \ge 1}$$q≥1 (note that q is not necessarily an integer) and is based on two ingredients: The fact that the two-point function for the free state decays sub-exponentially fast for cluster-weights $${1\le q\le 4}$$1≤q≤4, which is derived studying parafermionic observables on a discrete Riemann surface.A new result proving the equivalence of several properties of critical random-cluster models: the absence of infinite-cluster for wired boundary conditions,the uniqueness of infinite-volume measures,the sub-exponential decay of the two-point function for free boundary conditions,a Russo–Seymour–Welsh type result on crossing probabilities in rectangles with arbitrary boundary conditions. The result has important consequences toward the study of the scaling limit of the random-cluster model with $${q \in [1,4]}$$q∈[1,4]. It shows that the family of interfaces (for instance for Dobrushin boundary conditions) are tight when taking the scaling limit and that any sub-sequential limit can be parametrized by a Loewner chain. We also study the effect of boundary conditions on these sub-sequential limits. Let us mention that the result should be instrumental in the study of critical exponents as well.

[1]  Richard Kenyon,et al.  Conformal invariance of domino tiling , 1999 .

[2]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[3]  R. Kenyon,et al.  Dominos and the Gaussian Free Field , 2000, math-ph/0002027.

[4]  Jean Ruiz,et al.  Phases coexistence and surface tensions for the potts model , 1986 .

[5]  Allan Sly,et al.  Critical Ising on the Square Lattice Mixes in Polynomial Time , 2010, 1001.1613.

[6]  L. Russo A note on percolation , 1978 .

[7]  Lahoussine Laanait,et al.  Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation , 1991 .

[8]  H. Duminil-Copin,et al.  Crossing probabilities in topological rectangles for the critical planar FK-Ising model , 2013, 1312.7785.

[9]  Nicholas Crawford,et al.  Mean-Field Driven First-Order Phase Transitions in Systems with Long-Range Interactions , 2005, math-ph/0501067.

[10]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  The phase transitions of the planar random-cluster and Potts models with $$q \ge 1$$q≥1 are sharp , 2014, 1409.3748.

[12]  Conformal invariance of crossing probabilities for the Ising model with free boundary conditions , 2014, 1410.3715.

[13]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[14]  G. Grimmett,et al.  Bond percolation on isoradial graphs: criticality and universality , 2012, 1204.0505.

[15]  H. Duminil-Copin,et al.  Smirnov's fermionic observable away from criticality , 2010, 1010.0526.

[16]  K. Alexander,et al.  On weak mixing in lattice models , 1998 .

[17]  R. Baxter Potts model at the critical temperature , 1973 .

[18]  S. Smirnov,et al.  Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.

[19]  Senya Shlosman,et al.  First-order phase transitions in large entropy lattice models , 1982 .

[20]  H. Duminil-Copin,et al.  The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.

[21]  Conformally invariant scaling limits: an overview and a collection of problems , 2006, math/0602151.

[22]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[23]  C. Newman,et al.  Critical percolation exploration path and SLE6: a proof of convergence , 2006, math/0604487.

[24]  Alexander M. Polyakov,et al.  Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .

[25]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[26]  H. Duminil-Copin,et al.  The Near-Critical Planar FK-Ising Model , 2011, 1111.0144.

[27]  Vladas Sidoravicius,et al.  Random Currents and Continuity of Ising Model’s Spontaneous Magnetization , 2013, 1311.1937.

[28]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[29]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[30]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[31]  L. Kadanoff,et al.  Disorder variables and para-fermions in two-dimensional statistical mechanics , 1980 .

[32]  C. Hongler Conformal Invariance of Ising Model Correlations , 2012 .

[33]  H. Duminil-Copin,et al.  Convergence of Ising interfaces to Schramm's SLE curves , 2013, 1312.0533.

[34]  Parafermionic observables and their applications , 2015 .

[35]  H. Duminil-Copin Divergence of the correlation length for critical planar FK percolation with 1 ⩽ q ⩽ 4 via parafermionic observables , 2012, 1208.3787.

[36]  H. Duminil-Copin Order/disorder phase transitions: the example of the Potts model , 2015 .

[37]  S. Smirnov,et al.  Critical percolation: the expected number of clusters in a rectangle , 2009, 0909.4490.

[38]  J. Cardy,et al.  Holomorphic parafermions in the Potts model and stochastic Loewner evolution , 2006 .

[39]  Chen Ning Yang,et al.  The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .

[40]  First-Order Phase Transition in Potts Models with Finite-Range Interactions , 2006, math-ph/0609051.

[41]  R. Baxter Generalized Ferroelectric Model on a Square Lattice , 1971 .

[42]  Holomorphic Parafermions in the Potts model and SLE , 2006, cond-mat/0608496.

[43]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[44]  F. Y. Wu The Potts model , 1982 .

[45]  H. Duminil-Copin,et al.  A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.

[46]  C. Hongler,et al.  Ising interfaces and free boundary conditions , 2011, 1108.0643.

[47]  Percolation et modèle d'ising , 2009 .

[48]  H. Duminil-Copin,et al.  Critical point and duality in planar lattice models , 2014 .

[49]  Clément Hongler,et al.  Conformal invariance of spin correlations in the planar Ising model , 2012, 1202.2838.

[50]  Michael Aizenman,et al.  On the critical behavior of the magnetization in high-dimensional Ising models , 1986 .

[51]  H. Duminil-Copin,et al.  A new proof of the sharpness of the phase transition for Bernoulli percolation on $\mathbb Z^d$ , 2015, 1502.03051.

[52]  Holomorphic Spinor Observables in the Critical Ising Model , 2011, 1105.5709.

[53]  Pierre Nolin,et al.  Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model , 2011 .

[54]  H. Duminil-Copin,et al.  On the critical parameters of the q ≤ 4 random-cluster model on isoradial graphs , 2015, 1507.01356.

[55]  Stanislav Smirnov,et al.  Towards conformal invariance of 2D lattice models , 2007, 0708.0032.

[56]  S. Smirnov,et al.  Random curves, scaling limits and Loewner evolutions , 2012, 1212.6215.

[57]  V. Tassion Crossing probabilities for Voronoi percolation , 2014, 1410.6773.

[58]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[59]  Barry Simon,et al.  Correlation inequalities and the decay of correlations in ferromagnets , 1980 .

[60]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[61]  H. Duminil-Copin,et al.  Universality for the random-cluster model on isoradial graphs , 2017, 1711.02338.