The Role of the Subplate in the Development of the Mammalian Telencephalon

[1]  F. Sanides,et al.  A comparative Golgi study of Cajal foetal cells. , 1970, Zeitschrift fur mikroskopisch-anatomische Forschung.

[2]  P. Rakić Prenatal development of the visual system in rhesus monkey. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  M. Jacobson,et al.  Embryonic vertebrate central nervous system: Revised terminology , 1970 .

[4]  C. Shatz,et al.  The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  M J Bastiani,et al.  Cell recognition during neuronal development. , 1984, Science.

[6]  C. Shatz,et al.  Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  H Harris,et al.  Cell fusion and the analysis of malignancy. , 1971, Proceedings of the Royal Society of London. Series B, Biological sciences.

[8]  M. Jacobson,et al.  Ontogenesis of microtubule-associated protein 2 (MAP2) in embryonic mouse cortex. , 1986, Brain research.

[9]  Aström Ke On the Early Development of the Isocortex in Fetal Sheep , 1967 .

[10]  G M Innocenti,et al.  Growth and reshaping of axons in the establishment of visual callosal connections. , 1981, Science.

[11]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[12]  C. Mason Axon development in mouse cerebellum: Embryonic axon forms and expression of synapsin I , 1986, Neuroscience.

[13]  P. Camilli,et al.  Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence , 1984, Neuroscience.

[14]  T. L. Hickey,et al.  Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  P. Emson,et al.  Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  P. Rakić Mode of cell migration to the superficial layers of fetal monkey neocortex , 1972, The Journal of comparative neurology.

[18]  E. G. Jones,et al.  The organization and postnatal development of the commissural projection of the rat somatic sensory cortex , 1976, The Journal of comparative neurology.

[19]  F. Valverde,et al.  Transitory population of cells in the temporal cortex of kittens. , 1987, Brain research.

[20]  G. Meyer,et al.  Morphology and quantitative changes of transient NPY‐ir neuronal populations during early postnatal development of the cat visual cortex , 1987, The Journal of comparative neurology.

[21]  A. Matus,et al.  Differences in the developmental patterns of three microtubule- associated proteins in the rat cerebellum , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  R. Lund,et al.  Development of the geniculocortical pathway in rat , 1977, The Journal of comparative neurology.

[23]  C. Shatz,et al.  Neurogenesis of the cat's primary visual cortex , 1985, The Journal of comparative neurology.

[24]  G. Shoukimas,et al.  The development of the cerebral cortex in the embryonic mouse: An electron microscopic serial section analysis , 1978, The Journal of comparative neurology.

[25]  B. Cragg,et al.  The development of synapses in the visual system of the cat , 1975, The Journal of comparative neurology.

[26]  P. Rakić Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition , 1974, Science.

[27]  C. Shatz,et al.  A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons , 1988, The Journal of cell biology.

[28]  P. Somogyi,et al.  Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  B. Chronwall,et al.  Prenatal and postnatal development of GABA‐accumulating cells in the occipital neocortex of rat , 1980, The Journal of comparative neurology.

[30]  J. Lamborghini,et al.  Disappearance of Rohon‐Beard neurons from the spinal cord of larval Xenopus laevis , 1987, The Journal of comparative neurology.

[31]  A. Pearlman,et al.  Fibronectin-like immunoreactivity in the developing cerebral cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  I. Kostović,et al.  The development of synapses in cerebral cortex of the human fetus. , 1973, Brain research.

[33]  D. Hubel,et al.  The development of ocular dominance columns in normal and visually deprived monkeys , 1980, The Journal of comparative neurology.

[34]  A. Lieberman,et al.  NEURONS IN LAYER-1 OF DEVELOPING OCCIPITAL CORTEX OF RAT , 1977 .

[35]  S P Wise,et al.  Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex , 1978, The Journal of comparative neurology.

[36]  A. Lieberman,et al.  Neurons in layer I of the developing occipital cortex of the rat , 1977, The Journal of comparative neurology.

[37]  P. Rakić,et al.  Timing of major ontogenetic events in the visual cortex of the rhesus monkey. , 1975, UCLA forum in medical sciences.

[38]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[39]  T. Wiesel,et al.  The distribution of afferents representing the right and left eyes in the cat's visual cortex , 1977, Brain Research.

[40]  L. Reichardt,et al.  Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue , 1981, The Journal of cell biology.

[41]  J. Parnavelas,et al.  Retzius-Cajal cells: an ultrastructural study in the developing visual cortex of the rat , 1982, Journal of neurocytology.

[42]  S. Levay,et al.  Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study , 1978, The Journal of comparative neurology.

[43]  J. Parnavelas,et al.  Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in the developing rat visual cortex , 1983, Journal of neurocytology.

[44]  H. Loos,et al.  Identification of Cajal-Retzius cells in immature rodent cerebral cortex: A combined Golgi-EM study , 1981, Neuroscience Letters.

[45]  C. Shatz,et al.  Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons , 1987, Nature.

[46]  T. Powell,et al.  An experimental study of the termination of the lateral geniculo–cortical pathway in the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[47]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[48]  T. L. Hickey,et al.  Genesis of neurons in the dorsal lateral geniculate nucleus of the cat , 1984, The Journal of comparative neurology.

[49]  Pasko Rakic,et al.  Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon , 1980, Journal of neurocytology.

[50]  B. Chronwall,et al.  On the development of non-pyramidal neurons and axons outside the cortical plate: The early marginal zone as a pallial anlage , 1977, Anatomy and Embryology.

[51]  V. Caviness Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. , 1982, Brain research.

[52]  J. Truman,et al.  Steroid regulation of neuronal death in the moth nervous system , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.