Universality for Eigenvalue Algorithms on Sample Covariance Matrices
暂无分享,去创建一个
[1] Y. Yin. Limiting spectral distribution for a class of random matrices , 1986 .
[2] P. Deift,et al. On the condition number of the critically-scaled Laguerre Unitary Ensemble , 2015, 1507.00750.
[3] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[4] G. Pan,et al. On asymptotics of eigenvectors of large sample covariance matrix , 2007, 0708.1720.
[5] Rüdiger Reischuk,et al. Smoothed analysis of binary search trees , 2005, Theor. Comput. Sci..
[6] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[7] D Teng. Smoothed Analysis of Algorithms , 2002 .
[8] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[9] Thomas Trogdon,et al. Smoothed Analysis for the Conjugate Gradient Algorithm , 2016, 1605.06438.
[10] P. J. Forrester,et al. Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles , 2012, 1209.2190.
[11] E. Kostlan. Complexity theory of numerical linear algebra , 1988 .
[12] J. Ramírez,et al. Beta ensembles, stochastic Airy spectrum, and a diffusion , 2006, math/0607331.
[13] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[14] K. Wachter. The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .
[15] K. Johansson. Shape Fluctuations and Random Matrices , 1999, math/9903134.
[16] P. Deift,et al. How long does it take to compute the eigenvalues of a random, symmetric matrix? , 2012, 1203.4635.
[17] J. Neumann,et al. Numerical inverting of matrices of high order. II , 1951 .
[18] P. Deift,et al. Universality for the Toda Algorithm to Compute the Largest Eigenvalue of a Random Matrix , 2016, 1604.07384.
[19] P. Forrester. The spectrum edge of random matrix ensembles , 1993 .
[20] N. Pillai,et al. Universality of covariance matrices , 2011, 1110.2501.
[21] Shang-Hua Teng,et al. Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM J. Matrix Anal. Appl..
[22] David S. Watkins. Isospectral Flows , 1996 .
[23] Yann LeCun,et al. Universality in halting time and its applications in optimization , 2015, ArXiv.
[24] S. Smale. On the efficiency of algorithms of analysis , 1985 .
[25] H. Yau,et al. On the principal components of sample covariance matrices , 2014, 1404.0788.
[26] P. Deift,et al. Universality in numerical computations with random data , 2014, Proceedings of the National Academy of Sciences.
[27] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[28] J. W. Silverstein. Eigenvalues and eigenvectors of large di-mensional sample covariance matrices , 1986 .
[29] P. Deift,et al. Universality for the Toda algorithm to compute the eigenvalues of a random matrix , 2016 .
[30] S. Péché,et al. Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .
[31] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[32] P. Deift,et al. Ordinary differential equations and the symmetric eigenvalue problem , 1983 .
[33] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .