Beyond two-point statistics: using the minimum spanning tree as a tool for cosmology

Cosmological studies of large-scale structure have relied on two-point statistics, not fully exploiting the rich structure of the cosmic web. In this paper we show how to capture some of this cosmic web information by using the minimum spanning tree (MST), for the first time using it to estimate cosmological parameters in simulations. Discrete tracers of dark matter such as galaxies, N-body particles or haloes are used as nodes to construct a unique graph, the MST, that traces skeletal structure. We study the dependence of the MST on cosmological parameters using haloes from a suite of COmoving Lagrangian Acceleration (COLA) simulations with a box size of $250\ h^{-1}\, {\rm Mpc}$, varying the amplitude of scalar fluctuations (As), matter density (Ωm), and neutrino mass (∑mν). The power spectrum P and bispectrum B are measured for wavenumbers between 0.125 and 0.5 $h\, {\rm Mpc}^{-1}$, while a corresponding lower cut of ∼12.6 $h^{-1}\, {\rm Mpc}$ is applied to the MST. The constraints from the individual methods are fairly similar but when combined we see improved 1σ constraints of $\sim 17{{\ \rm per\ cent}}$ ($\sim 12{{\ \rm per\ cent}}$) on Ωm and $\sim 12{{\ \rm per\ cent}}$ ($\sim 10{{\ \rm per\ cent}}$) on As with respect to P (P + B) thus showing the MST is providing additional information. The MST can be applied to current and future spectroscopic surveys (BOSS, DESI, Euclid, PSF, WFIRST, and 4MOST) in 3D and photometric surveys (DES and LSST) in tomographic shells to constrain parameters and/or test systematics.

[1]  Awad Aubad,et al.  Towards a framework building for social systems modelling , 2020 .

[2]  Krishna Naidoo,et al.  MiSTree: a Python package for constructing and analysing Minimum Spanning Trees , 2019, J. Open Source Softw..

[3]  W. Percival,et al.  Baryon acoustic oscillations at z = 2.34 from the correlations of Lyα absorption in eBOSS DR14 , 2019, Astronomy & Astrophysics.

[4]  Jean-Luc Starck,et al.  Debiasing inference with approximate covariance matrices and other unidentified biases , 2019, Journal of Cosmology and Astroparticle Physics.

[5]  S. Walch,et al.  Determining the presence of characteristic fragmentation length-scales in filaments , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  L. Verde,et al.  Bayesian emulator optimisation for cosmology: application to the Lyman-alpha forest , 2018, Journal of Cosmology and Astroparticle Physics.

[7]  L. Verde,et al.  An emulator for the Lyman-α forest , 2018, Journal of Cosmology and Astroparticle Physics.

[8]  U. Seljak,et al.  The relativistic dipole and gravitational redshift on LSS , 2018, Journal of Cosmology and Astroparticle Physics.

[9]  F. Abdalla,et al.  Parameter inference and model comparison using theoretical predictions from noisy simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  Michael McLeod,et al.  Cosmological measurements from angular power spectra analysis of BOSS DR12 tomography , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  E. Bernieri,et al.  A MST catalogue of γ-ray source candidates above 10 GeV and at Galactic latitudes higher than 20° , 2018, Astronomy & Astrophysics.

[12]  Thomas Hofmann,et al.  Cosmological constraints from noisy convergence maps through deep learning , 2018, Physical Review D.

[13]  O. Lahav,et al.  Enhancing BOSS bispectrum cosmological constraints with maximal compression , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  E. Bernieri,et al.  Minimum Spanning Tree cluster analysis of the LMC region above 10 GeV: detection of the SNRs N 49B and N 63A , 2018, Astrophysics and Space Science.

[15]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[16]  O. Lahav,et al.  Maximal compression of the redshift-space galaxy power spectrum and bispectrum , 2017, 1709.03600.

[17]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[18]  Alvise Vianello,et al.  Massive data compression for parameter-dependent covariance matrices , 2017, 1707.06529.

[19]  K. Koyama,et al.  COLA with massive neutrinos , 2017, 1705.08165.

[20]  Rien van de Weygaert,et al.  Tracing the cosmic web , 2017, 1705.03021.

[21]  M. Manera,et al.  COLA with scale-dependent growth: applications to screened modified gravity models , 2017, 1703.00879.

[22]  S. Molinari,et al.  Source clustering in the Hi-GAL survey determined using a minimum spanning tree method , 2016, 1611.00799.

[23]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[24]  Jessica Lovelace Rainbolt,et al.  The use of minimal spanning trees in particle physics , 2016, 1608.04772.

[25]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[26]  Barnabás Póczos,et al.  Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.

[27]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[28]  Francisco-Shu Kitaura,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies , 2016, 1606.00439.

[29]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[30]  A. Barab'asi,et al.  Discriminating topology in galaxy distributions using network analysis , 2016, 1603.02285.

[31]  R. Nichol,et al.  The large-scale 3-point correlation function of the SDSS BOSS DR12 CMASS galaxies , 2015, 1607.06098.

[32]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[33]  A. Bolton,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release , 2015, 1509.06404.

[34]  Pablo Fosalba,et al.  ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method , 2015, 1509.04685.

[35]  J. Lesgourgues,et al.  Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.

[36]  D. Eisenstein,et al.  Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms , 2015, 1506.04746.

[37]  Cullan Howlett,et al.  L-PICOLA: A parallel code for fast dark matter simulation , 2015, Astron. Comput..

[38]  M. Viel,et al.  Voids in massive neutrino cosmologies , 2015, 1506.03088.

[39]  R. Scoccimarro,et al.  Fast estimators for redshift-space clustering , 2015, 1506.02729.

[40]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[41]  F. Hoyle,et al.  AN OBSERVATIONAL DETECTION OF THE BRIDGE EFFECT OF VOID FILAMENTS , 2015, 1504.00077.

[42]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[43]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[44]  G. Fazio,et al.  From voids to Coma: the prevalence of pre-processing in the local Universe , 2014, 1401.7328.

[45]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11 , 2014, 1401.1768.

[46]  F. Castander,et al.  The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues , 2013, 1312.2013.

[47]  Baojiu Li,et al.  MASSIVE GRAVITY WRAPPED IN THE COSMIC WEB , 2013, 1311.7187.

[48]  A. Hopkins,et al.  Galaxy and mass assembly (GAMA): The large-scale structure of galaxies and comparison to mock universes , 2013, 1311.1211.

[49]  A. Slosar,et al.  DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.

[50]  Jounghun Lee,et al.  DARK SECTOR COUPLING BENDS THE SUPERCLUSTERS , 2013, 1306.1642.

[51]  Matias Zaldarriaga,et al.  Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.

[52]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[53]  B. Garilli,et al.  Galaxy cluster searches based on photometric redshifts in the four CFHTLS Wide fields , 2011, 1109.0850.

[54]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[55]  S. Pilipenko,et al.  Simulated evolution of the dark matter large-scale structure , 2011, 1102.2951.

[56]  M. Viel,et al.  The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.

[57]  B. Garilli,et al.  Galaxy structure searches by photometric redshifts in the CFHTLS , 2009, 0910.3827.

[58]  Simon F. Portegies Zwart,et al.  Using the minimum spanning tree to trace mass segregation , 2009, 0901.2047.

[59]  R. Vavrek,et al.  New Statistical Results on the Angular Distribution of Gamma‐Ray Bursts , 2008, 0902.4812.

[60]  Jounghun Lee,et al.  The size distribution of void filaments in a ΛCDM cosmology , 2008, 0801.0634.

[61]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[62]  J. Colberg,et al.  Quantifying cosmic superstructures , 2006, astro-ph/0611641.

[63]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[64]  J. Farine,et al.  Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .

[65]  S. Collaboration Measurement of the rate of nu_e + d -->p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2001, nucl-ex/0106015.

[66]  Huan Lin,et al.  Large-scale galaxy distribution in the Las Campanas Redshift Survey , 2001 .

[67]  V. Muller,et al.  SUPERLARGE-SCALE STRUCTURE IN N-BODY SIMULATIONS , 1999, astro-ph/9902097.

[68]  C. Adami,et al.  The use of minimal spanning tree to characterize the 2D cluster galaxy distribution , 1998, astro-ph/9807285.

[69]  The Super-Kamiokande Collaboration,et al.  Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.

[70]  L. Moscardini,et al.  The cluster distribution as a test of dark matter models — IV. Topology and geometry , 1997, astro-ph/9708136.

[71]  M. Itoh,et al.  Graph-Theoretical Approach for Quantifying the Large-Scale Structure of the Universe , 1997 .

[72]  S. P. BhavsarR.J. Splinter,et al.  THE SUPERIORITY OF THE MINIMAL SPANNING TREE IN PERCOLATION ANALYSES OF COSMOLOGICAL DATA SETS , 1996, astro-ph/9605179.

[73]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[74]  Leo G. Krzewina,et al.  Minimal spanning tree statistics for the analysis of large-scale structure , 1996 .

[75]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[76]  R. Weygaert,et al.  The minimal spanning tree as an estimator for generalized dimensions , 1992 .

[77]  Bernard J. T. Jones,et al.  Why the Universe is not a fractal , 1990 .

[78]  S. Bhavsar,et al.  II. LARGE-SCALE DISTRIBUTION OF GALAXIES: FILAMENTARY STRUCTURE AND VISUAL BIAS , 1988 .

[79]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[80]  J. Barrow,et al.  Minimal spanning trees, filaments and galaxy clustering , 1985 .

[81]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[82]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[83]  Samuel Hinton,et al.  ChainConsumer , 2016, J. Open Source Softw..

[84]  J. van Leeuwen,et al.  Algorithms - ESA 2003 , 2003, Lecture Notes in Computer Science.

[85]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[86]  P. Coles,et al.  Quantifying the geometry of large-scale structure , 1995 .

[87]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .