Beyond two-point statistics: using the minimum spanning tree as a tool for cosmology
暂无分享,去创建一个
O. Lahav | A. Font-Ribera | M. Viel | K. Naidoo | L. Whiteway | H. Gil-Marín | E. Massara | Davide Gualdi | D. Gualdi
[1] Awad Aubad,et al. Towards a framework building for social systems modelling , 2020 .
[2] Krishna Naidoo,et al. MiSTree: a Python package for constructing and analysing Minimum Spanning Trees , 2019, J. Open Source Softw..
[3] W. Percival,et al. Baryon acoustic oscillations at z = 2.34 from the correlations of Lyα absorption in eBOSS DR14 , 2019, Astronomy & Astrophysics.
[4] Jean-Luc Starck,et al. Debiasing inference with approximate covariance matrices and other unidentified biases , 2019, Journal of Cosmology and Astroparticle Physics.
[5] S. Walch,et al. Determining the presence of characteristic fragmentation length-scales in filaments , 2019, Monthly Notices of the Royal Astronomical Society.
[6] L. Verde,et al. Bayesian emulator optimisation for cosmology: application to the Lyman-alpha forest , 2018, Journal of Cosmology and Astroparticle Physics.
[7] L. Verde,et al. An emulator for the Lyman-α forest , 2018, Journal of Cosmology and Astroparticle Physics.
[8] U. Seljak,et al. The relativistic dipole and gravitational redshift on LSS , 2018, Journal of Cosmology and Astroparticle Physics.
[9] F. Abdalla,et al. Parameter inference and model comparison using theoretical predictions from noisy simulations , 2018, Monthly Notices of the Royal Astronomical Society.
[10] Michael McLeod,et al. Cosmological measurements from angular power spectra analysis of BOSS DR12 tomography , 2018, Monthly Notices of the Royal Astronomical Society.
[11] E. Bernieri,et al. A MST catalogue of γ-ray source candidates above 10 GeV and at Galactic latitudes higher than 20° , 2018, Astronomy & Astrophysics.
[12] Thomas Hofmann,et al. Cosmological constraints from noisy convergence maps through deep learning , 2018, Physical Review D.
[13] O. Lahav,et al. Enhancing BOSS bispectrum cosmological constraints with maximal compression , 2018, Monthly Notices of the Royal Astronomical Society.
[14] E. Bernieri,et al. Minimum Spanning Tree cluster analysis of the LMC region above 10 GeV: detection of the SNRs N 49B and N 63A , 2018, Astrophysics and Space Science.
[15] J. K. Blackburn,et al. A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.
[16] O. Lahav,et al. Maximal compression of the redshift-space galaxy power spectrum and bispectrum , 2017, 1709.03600.
[17] B. Yanny,et al. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.
[18] Alvise Vianello,et al. Massive data compression for parameter-dependent covariance matrices , 2017, 1707.06529.
[19] K. Koyama,et al. COLA with massive neutrinos , 2017, 1705.08165.
[20] Rien van de Weygaert,et al. Tracing the cosmic web , 2017, 1705.03021.
[21] M. Manera,et al. COLA with scale-dependent growth: applications to screened modified gravity models , 2017, 1703.00879.
[22] S. Molinari,et al. Source clustering in the Hi-GAL survey determined using a minimum spanning tree method , 2016, 1611.00799.
[23] David R. Silva,et al. The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.
[24] Jessica Lovelace Rainbolt,et al. The use of minimal spanning trees in particle physics , 2016, 1608.04772.
[25] W. M. Wood-Vasey,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.
[26] Barnabás Póczos,et al. Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.
[27] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[28] Francisco-Shu Kitaura,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies , 2016, 1606.00439.
[29] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[30] A. Barab'asi,et al. Discriminating topology in galaxy distributions using network analysis , 2016, 1603.02285.
[31] R. Nichol,et al. The large-scale 3-point correlation function of the SDSS BOSS DR12 CMASS galaxies , 2015, 1607.06098.
[32] A. Heavens,et al. Parameter inference with estimated covariance matrices , 2015, 1511.05969.
[33] A. Bolton,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release , 2015, 1509.06404.
[34] Pablo Fosalba,et al. ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method , 2015, 1509.04685.
[35] J. Lesgourgues,et al. Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.
[36] D. Eisenstein,et al. Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms , 2015, 1506.04746.
[37] Cullan Howlett,et al. L-PICOLA: A parallel code for fast dark matter simulation , 2015, Astron. Comput..
[38] M. Viel,et al. Voids in massive neutrino cosmologies , 2015, 1506.03088.
[39] R. Scoccimarro,et al. Fast estimators for redshift-space clustering , 2015, 1506.02729.
[40] Gregory F. Snyder,et al. The illustris simulation: Public data release , 2015, Astron. Comput..
[41] F. Hoyle,et al. AN OBSERVATIONAL DETECTION OF THE BRIDGE EFFECT OF VOID FILAMENTS , 2015, 1504.00077.
[42] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[43] V. Springel,et al. Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.
[44] G. Fazio,et al. From voids to Coma: the prevalence of pre-processing in the local Universe , 2014, 1401.7328.
[45] W. Percival,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11 , 2014, 1401.1768.
[46] F. Castander,et al. The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues , 2013, 1312.2013.
[47] Baojiu Li,et al. MASSIVE GRAVITY WRAPPED IN THE COSMIC WEB , 2013, 1311.7187.
[48] A. Hopkins,et al. Galaxy and mass assembly (GAMA): The large-scale structure of galaxies and comparison to mock universes , 2013, 1311.1211.
[49] A. Slosar,et al. DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.
[50] Jounghun Lee,et al. DARK SECTOR COUPLING BENDS THE SUPERCLUSTERS , 2013, 1306.1642.
[51] Matias Zaldarriaga,et al. Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.
[52] Risa H. Wechsler,et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.
[53] B. Garilli,et al. Galaxy cluster searches based on photometric redshifts in the four CFHTLS Wide fields , 2011, 1109.0850.
[54] Neil D. Lawrence,et al. Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..
[55] S. Pilipenko,et al. Simulated evolution of the dark matter large-scale structure , 2011, 1102.2951.
[56] M. Viel,et al. The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.
[57] B. Garilli,et al. Galaxy structure searches by photometric redshifts in the CFHTLS , 2009, 0910.3827.
[58] Simon F. Portegies Zwart,et al. Using the minimum spanning tree to trace mass segregation , 2009, 0901.2047.
[59] R. Vavrek,et al. New Statistical Results on the Angular Distribution of Gamma‐Ray Bursts , 2008, 0902.4812.
[60] Jounghun Lee,et al. The size distribution of void filaments in a ΛCDM cosmology , 2008, 0801.0634.
[61] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[62] J. Colberg,et al. Quantifying cosmic superstructures , 2006, astro-ph/0611641.
[63] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[64] J. Farine,et al. Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .
[65] S. Collaboration. Measurement of the rate of nu_e + d -->p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2001, nucl-ex/0106015.
[66] Huan Lin,et al. Large-scale galaxy distribution in the Las Campanas Redshift Survey , 2001 .
[67] V. Muller,et al. SUPERLARGE-SCALE STRUCTURE IN N-BODY SIMULATIONS , 1999, astro-ph/9902097.
[68] C. Adami,et al. The use of minimal spanning tree to characterize the 2D cluster galaxy distribution , 1998, astro-ph/9807285.
[69] The Super-Kamiokande Collaboration,et al. Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.
[70] L. Moscardini,et al. The cluster distribution as a test of dark matter models — IV. Topology and geometry , 1997, astro-ph/9708136.
[71] M. Itoh,et al. Graph-Theoretical Approach for Quantifying the Large-Scale Structure of the Universe , 1997 .
[72] S. P. BhavsarR.J. Splinter,et al. THE SUPERIORITY OF THE MINIMAL SPANNING TREE IN PERCOLATION ANALYSES OF COSMOLOGICAL DATA SETS , 1996, astro-ph/9605179.
[73] Max Tegmark,et al. Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.
[74] Leo G. Krzewina,et al. Minimal spanning tree statistics for the analysis of large-scale structure , 1996 .
[75] J. Bond,et al. How filaments of galaxies are woven into the cosmic web , 1995, Nature.
[76] R. Weygaert,et al. The minimal spanning tree as an estimator for generalized dimensions , 1992 .
[77] Bernard J. T. Jones,et al. Why the Universe is not a fractal , 1990 .
[78] S. Bhavsar,et al. II. LARGE-SCALE DISTRIBUTION OF GALAXIES: FILAMENTARY STRUCTURE AND VISUAL BIAS , 1988 .
[79] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[80] J. Barrow,et al. Minimal spanning trees, filaments and galaxy clustering , 1985 .
[81] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[82] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[83] Samuel Hinton,et al. ChainConsumer , 2016, J. Open Source Softw..
[84] J. van Leeuwen,et al. Algorithms - ESA 2003 , 2003, Lecture Notes in Computer Science.
[85] S. Kim,et al. Evidence for oscillation of atmospheric neutrinos , 1998 .
[86] P. Coles,et al. Quantifying the geometry of large-scale structure , 1995 .
[87] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .