Upper bounds for the diameter and height of graphs of convex polyhedra

AbstractLet Δ(d, n) be the maximum diameter of the graph of ad-dimensional polyhedronP withn-facets. It was conjectured by Hirsch in 1957 that Δ(d, n) depends linearly onn andd. However, all known upper bounds for Δ(d, n) were exponential ind. We prove a quasi-polynomial bound Δ(d, n)≤n2 logd+3.LetP be ad-dimensional polyhedron withn facets, let ϕ be a linear objective function which is bounded onP and letv be a vertex ofP. We prove that in the graph ofP there exists a monotone path leading fromv to a vertex with maximal ϕ-value whose length is at most % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVy0df9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0xc8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaW% baaSqabeaacaaIYaWaaOaaaeaacaWGUbaameqaaaaaaaa!3C85! $$n^{2\sqrt n } $$ .