Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids

We report an in-depth investigation of an inkjet-printed silver (Ag) nanoparticle grid combined with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) of different conductivities as an alternative to an indium tin oxide (ITO)-based transparent anode for organic solar cell applications. The reported measurements revealed higher transparency of the inkjet-printed Ag nanoparticle-based grid when compared to different thicknesses of ITO on glass substrates. Based on the proposed current collecting grid, a record power conversion efficiency of 2% is achieved for ITO-free organic solar cells.

[1]  Ronn Andriessen,et al.  Current Collecting Grids for ITO-Free Solar Cells , 2012 .

[2]  J. deMello,et al.  High efficiency flexible ITO-free polymer/fullerene photodiodes. , 2006, Physical chemistry chemical physics : PCCP.

[3]  L. Jay Guo,et al.  Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes , 2008 .

[4]  Chongwu Zhou,et al.  Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. , 2010, ACS nano.

[5]  C. J. M. Emmott,et al.  Environmental and economic assessment of ITO-free electrodes for organic solar cells , 2012 .

[6]  C. Waldauf,et al.  Inkjet-printed polymer-fullerene blends for organic electronic applications , 2012 .

[7]  Shlomo Magdassi,et al.  Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. , 2009, ACS nano.

[8]  Donal D. C. Bradley,et al.  Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates , 2011 .

[9]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[10]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[11]  Christoph J. Brabec,et al.  Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime , 2008 .

[12]  A. Cheknane Optimal design of electrode grids dimensions for ITO‐free organic photovoltaic devices , 2011 .

[13]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[14]  Christoph J. Brabec,et al.  Topographical and morphological aspects of spray coated organic photovoltaics , 2009 .

[15]  Wei Gong,et al.  High‐Performance Metal‐Free Solar Cells Using Stamp Transfer Printed Vapor Phase Polymerized Poly(3,4‐Ethylenedioxythiophene) Top Anodes , 2012 .

[16]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[17]  Jeongdai Jo,et al.  Control of doctor‐blade coated poly (3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) electrodes shape on prepatterned substrates via microflow control in a drying droplet , 2011 .

[18]  Robert C. Tenent,et al.  Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. , 2008, ACS nano.

[19]  Mark C. Hersam,et al.  Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. , 2008, Nano letters.

[20]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[21]  Ronn Andriessen,et al.  Printable anodes for flexible organic solar cell modules , 2004 .

[22]  Udo Lang,et al.  Microscopical Investigations of PEDOT:PSS Thin Films , 2009 .

[23]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[24]  Seok‐In Na,et al.  Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes , 2008 .

[25]  Y. Zhong,et al.  Oxygen‐Terminated Nanocrystalline Diamond Film as an Efficient Anode in Photovoltaics , 2010 .

[26]  W. R. Salaneck,et al.  FLUORINE TIN OXIDE AS AN ALTERNATIVE TO INDIUM TIN OXIDE IN POLYMER LEDS , 1998 .