Negative Poisson's ratios in cellular foam materials

Abstract Materials with negative Poisson's ratios (auxetic) get fatter when stretched and thinner when compressed. This paper discusses a new explanation for achieving auxetic behaviour in foam cellular materials, namely a ‘rotation of rigid units’ mechanism. Such auxetic cellular materials can be produced from conventional open-cell cellular materials if the ribs of cell are slightly thicker in the proximity of the joints when compared to the centre of the ribs with the consequence that if the conventional cellular material is volumetrically compressed (and then ‘frozen’ in the compressed conformation), the cellular structure will deform in such a way which conserves the geometry at the joints (i.e. behave like ‘rigid units’) whilst the major deformations will occur along the length of the more flexible ribs which form ‘kinks’ at their centres as a result of the extensive buckling. It is proposed that uniaxial tensile loading of such cellular systems will result auxetic behaviour due to re-unfolding of these ‘kinks’ and re-rotation of the ‘rigid joints’.

[1]  Fabrizio Scarpa,et al.  Passive and MR Fluid-coated Auxetic PU Foam – Mechanical, Acoustic, and Electromagnetic Properties , 2004 .

[2]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties , 1989 .

[3]  Joseph N. Grima,et al.  Networked calix[4]arene polymers with unusual mechanical properties. , 2005, Chemical communications.

[4]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[5]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[6]  C. Smith,et al.  Quantitative analysis of the microscale of auxetic foams , 2005 .

[7]  Massimo Ruzzene,et al.  Global and local linear buckling behavior of a chiral cellular structure , 2005 .

[8]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[9]  Joseph N. Grima,et al.  Auxetic behaviour from rotating rigid units , 2005 .

[10]  Roderic S. Lakes,et al.  Analysis of the structure - property relations of foam materials , 1995 .

[11]  N. J. Mills,et al.  Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells , 1997 .

[12]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[13]  Joseph N. Grima,et al.  Do Zeolites Have Negative Poisson's Ratios? , 2000 .

[14]  Roderic S. Lakes,et al.  Nonlinear Analysis of the Poisson's Ratio of Negative Poisson's Ratio Foams , 1995 .

[15]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[16]  K. Evans,et al.  Strain-dependent behaviour of microporous polyethylene with a negative Poisson's ratio , 1993, Journal of Materials Science.

[17]  James R. Chelikowsky,et al.  Negative Poisson ratios in crystalline SiO2 from first-principles calculations , 1992, Nature.

[18]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[19]  Anselm C. Griffin,et al.  Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para‐quaterphenyls , 2005 .

[20]  J. Parise,et al.  Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.

[21]  Wojciechowski,et al.  Negative Poisson ratio in a two-dimensional "isotropic" solid. , 1989, Physical review. A, General physics.

[22]  Joseph N. Grima,et al.  A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model , 2000 .

[23]  K. Wojciechowski Non-chiral, molecular model of negative Poisson ratio in two dimensions , 2003 .

[24]  Joseph N. Grima,et al.  Novel honeycombs with auxetic behaviour , 2005 .

[25]  Ray H. Baughman,et al.  Crystalline networks with unusual predicted mechanical and thermal properties , 1993, Nature.

[26]  Joseph N. Grima,et al.  Self expanding molecular networks , 2000 .

[27]  Kenneth E. Evans,et al.  The effects of powder morphology on the processing of auxetic polypropylene (PP of negative Poisson's ratio) , 1996 .

[28]  I. Burgess,et al.  A theoretical approach to the deformation of honeycomb based composite materials , 1979 .

[29]  William A. Bullough,et al.  Trends in acoustic properties of iron particle seeded auxetic polyurethane foam , 2004 .

[30]  A. Griffin,et al.  Toward Negative Poisson Ratio Polymers Through Molecular Design , 1998 .

[31]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[32]  Kenneth E. Evans,et al.  Auxetic foams: Modelling negative Poisson's ratios , 1994 .

[33]  Roderic S. Lakes,et al.  Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson's ratio , 1995 .

[34]  K. Evans,et al.  Models for the elastic deformation of honeycombs , 1996 .

[35]  Joseph N. Grima,et al.  An alternative explanation for the negative Poisson's ratios in auxetic foams , 2005 .

[36]  K. Wojciechowski,et al.  Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers , 1987 .

[37]  R. Lakes,et al.  Indentability of Conventional and Negative Poisson's Ratio Foams , 1992 .