A primal-dual interior-point method based on various selections of displacement step for symmetric optimization
暂无分享,去创建一个
[1] A. Keraghel,et al. Extension of a projective interior point method for linearly constrained convex programming , 2007, Appl. Math. Comput..
[2] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[3] Sanyang Liu,et al. A one-step smoothing Newton method for second-order cone programming , 2009 .
[4] Arkadi Nemirovski,et al. The projective method for solving linear matrix inequalities , 1997, Math. Program..
[5] Farid Alizadeh,et al. Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones , 2001, Math. Oper. Res..
[6] Jean-Pierre Crouzeix,et al. A logarithm barrier method for semi-definite programming , 2008, RAIRO Oper. Res..
[7] Donald Goldfarb,et al. Second-order cone programming , 2003, Math. Program..
[8] Baha Alzalg,et al. Stochastic second-order cone programming: Applications models , 2012 .
[9] Shinji Hara,et al. Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .
[10] Baha Alzalg,et al. HOMOGENEOUS SELF-DUAL METHODS FOR SYMMETRIC CONES UNDER UNCERTAINTY , 2016 .
[11] P. Maher,et al. Handbook of Matrices , 1999, The Mathematical Gazette.
[12] Roger Behling,et al. Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization , 2014, J. Optim. Theory Appl..
[13] Michael J. Todd,et al. Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..
[14] Djamel Benterki,et al. A relaxed logarithmic barrier method for semidefinite programming , 2015, RAIRO Oper. Res..
[15] Guoping He,et al. A new one-step smoothing Newton method for second-order cone programming , 2012 .
[16] A. Leulmi,et al. An improving procedure of the interior projective method for linear programming , 2008, Appl. Math. Comput..
[17] Yin Zhang,et al. On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..
[18] K. A. Ariyawansa,et al. Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming , 2014 .
[19] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[20] Mahesh H. Dodani,et al. Karmarkar's projective method for linear programming: a computational appraisal , 1989 .
[21] Kim-Chuan Toh,et al. SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .
[22] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[23] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[24] Nicholas I. M. Gould,et al. Trajectory-following methods for large-scale degenerate convex quadratic programming , 2011, Mathematical Programming Computation.
[25] Baha Alzalg. Decomposition-based interior point methods for stochastic quadratic second-order cone programming , 2014, Appl. Math. Comput..
[26] Djamel Benterki,et al. A feasible primal-dual interior point method for linear semidefinite programming , 2017, J. Comput. Appl. Math..
[27] Baha Alzalg. Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone programming , 2015, Appl. Math. Comput..
[28] Farid Alizadeh,et al. Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..
[29] H. Wolkowicz,et al. Bounds for eigenvalues using traces , 1980 .
[30] Baha Alzalg. Homogeneous Self-dual Algorithms for Stochastic Second-Order Cone Programming , 2014, J. Optim. Theory Appl..
[31] J. Faraut,et al. Analysis on Symmetric Cones , 1995 .
[32] Hans D. Mittelmann,et al. Interior Point Methods for Second-Order Cone Programming and OR Applications , 2004, Comput. Optim. Appl..
[33] Michael J. Todd,et al. On combined phase 1-phase 2 projective methods for linear programming , 2005, Algorithmica.