A primal-dual interior-point method based on various selections of displacement step for symmetric optimization

In this paper, we develop a primal-dual central trajectory interior-point algorithm for symmetric programming problems and establish its complexity analysis. The main contribution of the paper is that it uniquely equips the central trajectory algorithm with various selections of the displacement step while solving symmetric programming. To show the efficiency of the proposed algorithm, these selections of calculating the displacement step are compared in numerical examples for second-order cone programming, which is a special case of symmetric programming.

[1]  A. Keraghel,et al.  Extension of a projective interior point method for linearly constrained convex programming , 2007, Appl. Math. Comput..

[2]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[3]  Sanyang Liu,et al.  A one-step smoothing Newton method for second-order cone programming , 2009 .

[4]  Arkadi Nemirovski,et al.  The projective method for solving linear matrix inequalities , 1997, Math. Program..

[5]  Farid Alizadeh,et al.  Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones , 2001, Math. Oper. Res..

[6]  Jean-Pierre Crouzeix,et al.  A logarithm barrier method for semi-definite programming , 2008, RAIRO Oper. Res..

[7]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[8]  Baha Alzalg,et al.  Stochastic second-order cone programming: Applications models , 2012 .

[9]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[10]  Baha Alzalg,et al.  HOMOGENEOUS SELF-DUAL METHODS FOR SYMMETRIC CONES UNDER UNCERTAINTY , 2016 .

[11]  P. Maher,et al.  Handbook of Matrices , 1999, The Mathematical Gazette.

[12]  Roger Behling,et al.  Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization , 2014, J. Optim. Theory Appl..

[13]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[14]  Djamel Benterki,et al.  A relaxed logarithmic barrier method for semidefinite programming , 2015, RAIRO Oper. Res..

[15]  Guoping He,et al.  A new one-step smoothing Newton method for second-order cone programming , 2012 .

[16]  A. Leulmi,et al.  An improving procedure of the interior projective method for linear programming , 2008, Appl. Math. Comput..

[17]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[18]  K. A. Ariyawansa,et al.  Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming , 2014 .

[19]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[20]  Mahesh H. Dodani,et al.  Karmarkar's projective method for linear programming: a computational appraisal , 1989 .

[21]  Kim-Chuan Toh,et al.  SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .

[22]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[23]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[24]  Nicholas I. M. Gould,et al.  Trajectory-following methods for large-scale degenerate convex quadratic programming , 2011, Mathematical Programming Computation.

[25]  Baha Alzalg Decomposition-based interior point methods for stochastic quadratic second-order cone programming , 2014, Appl. Math. Comput..

[26]  Djamel Benterki,et al.  A feasible primal-dual interior point method for linear semidefinite programming , 2017, J. Comput. Appl. Math..

[27]  Baha Alzalg Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone programming , 2015, Appl. Math. Comput..

[28]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[29]  H. Wolkowicz,et al.  Bounds for eigenvalues using traces , 1980 .

[30]  Baha Alzalg Homogeneous Self-dual Algorithms for Stochastic Second-Order Cone Programming , 2014, J. Optim. Theory Appl..

[31]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[32]  Hans D. Mittelmann,et al.  Interior Point Methods for Second-Order Cone Programming and OR Applications , 2004, Comput. Optim. Appl..

[33]  Michael J. Todd,et al.  On combined phase 1-phase 2 projective methods for linear programming , 2005, Algorithmica.