Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration

[1]  Ayellet V. Segrè,et al.  Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation , 2018, Nature Genetics.

[2]  A. Chen-Plotkin,et al.  The Post-GWAS Era: From Association to Function. , 2018, American journal of human genetics.

[3]  Yakir A Reshef,et al.  Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits , 2018, Nature Genetics.

[4]  A mega-analysis of expression quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene expression variation in liver , 2018, Scientific Reports.

[5]  S. Horvath,et al.  Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap , 2016, Science.

[6]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[7]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[8]  The Gene Ontology Consortium,et al.  Expansion of the Gene Ontology knowledgebase and resources , 2016, Nucleic Acids Res..

[9]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[10]  The Gene Ontology Consortium Expansion of the Gene Ontology knowledgebase and resources , 2016, Nucleic Acids Res..

[11]  Ayellet V. Segrè,et al.  Colocalization of GWAS and eQTL Signals Detects Target Genes , 2016, bioRxiv.

[12]  Olivier Delaneau,et al.  A complete tool set for molecular QTL discovery and analysis , 2016, Nature Communications.

[13]  Maria Nicoletta Moretti,et al.  An atlas of gene expression and gene co-regulation in the human retina , 2016, Nucleic acids research.

[14]  Benjamin A. Logsdon,et al.  Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia , 2016, Nature Neuroscience.

[15]  Yara T. E. Lechanteur,et al.  Nature Genetics Advance Online Publication , 2022 .

[16]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[17]  Thomas Ach,et al.  What Does Genetics Tell Us About Age-Related Macular Degeneration? , 2015, Annual review of vision science.

[18]  Dmitri D. Pervouchine,et al.  The human transcriptome across tissues and individuals , 2015, Science.

[19]  C. Ungermann,et al.  BORC and BLOC-1: Shared subunits in trafficking complexes. , 2015, Developmental cell.

[20]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[21]  D. Dickman,et al.  Gene Dosage in the Dysbindin Schizophrenia Susceptibility Network Differentially Affect Synaptic Function and Plasticity , 2015, The Journal of Neuroscience.

[22]  G. Abecasis,et al.  Age-related macular degeneration: genetics and biology coming together. , 2014, Annual review of genomics and human genetics.

[23]  J. Leek svaseq: removing batch effects and other unwanted noise from sequencing data , 2014, bioRxiv.

[24]  A. Brookes,et al.  GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies , 2013, European Journal of Human Genetics.

[25]  E. Levanon,et al.  Human housekeeping genes, revisited. , 2013, Trends in genetics : TIG.

[26]  Andrew G. Clark,et al.  Distilling Pathophysiology from Complex Disease Genetics , 2013, Cell.

[27]  Christopher D. Brown,et al.  Integrative Modeling of eQTLs and Cis-Regulatory Elements Suggests Mechanisms Underlying Cell Type Specificity of eQTLs , 2012, PLoS genetics.

[28]  Johann A. Gagnon-Bartsch,et al.  Using control genes to correct for unwanted variation in microarray data. , 2012, Biostatistics.

[29]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[30]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[31]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[32]  Aaron M. Newman,et al.  Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks , 2012, Genome Medicine.

[33]  T. Spector,et al.  Corrigendum: Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes , 2011, Nature Genetics.

[34]  Lior Pachter,et al.  Identification of novel transcripts in annotated genomes using RNA-Seq , 2011, Bioinform..

[35]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[36]  Mark I. McCarthy,et al.  Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes , 2011, Nature Genetics.

[37]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[38]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[39]  Andreas Scherer,et al.  Batch Effects and Noise in Microarray Experiments: Sources and Solutions , 2009 .

[40]  T Mark Beasley,et al.  Rank-Based Inverse Normal Transformations are Increasingly Used, But are They Merited? , 2009, Behavior genetics.

[41]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[42]  C. Nordgaard,et al.  Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. , 2007, American journal of ophthalmology.

[43]  J. Hofsteenge,et al.  Identification and Characterization of aβ1,3-Glucosyltransferase That Synthesizes the Glc-β1,3-Fuc Disaccharide on Thrombospondin Type 1 Repeats* , 2006, Journal of Biological Chemistry.

[44]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[45]  R. Hennekam,et al.  Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. , 2006, American journal of human genetics.

[46]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[47]  Ronald Klein,et al.  A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. , 2005, Archives of ophthalmology.

[48]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Leslie Hyman,et al.  A Simplified Severity Scale for Age-Related Macular Degeneration , 2005 .

[50]  T. Olsen,et al.  The Minnesota Grading System of eye bank eyes for age-related macular degeneration. , 2004, Investigative ophthalmology & visual science.

[51]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[52]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Curcio,et al.  Photoreceptor inner segments in monkey and human retina: Mitochondrial density, optics, and regional variation , 2002, Visual Neuroscience.

[54]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[55]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.