Development of multi-ESI-sprayer, multi-atmospheric-pressure-inlet mass spectrometry and its application to accurate mass measurement using time-of-flight mass spectrometry.
暂无分享,去创建一个
The atmospheric pressure sampling nozzle (orifice, heated capillary, or inlet) of a high mass accuracy time-of-flight mass spectrometer (TOF-MS) was modified by replacing its single nozzle with multiple atmospheric pressure nozzles. This allowed multiple streams of liquids to be introduced into the MS in parallel (an electrosprayer for each nozzle), with minimum analyte interactions between the streams. The chemical contents of all liquid streams were analyzed concurrently using a single mass spectrometer. To obtain a higher mass accuracy by providing internal reference on each scan (acquisition) and to evaluate the suitability of TOF-MS for molecular-formula confirmation, a dual-ESI-sprayer, dual-nozzle version of this design was used. The accurate masses of tens of organic compounds in the mass range of 200-3000 Da were measured, and the results were compared with those obtained using dual-sprayer, single-nozzle TOF-MS. A significant improvement in mass accuracy was observed when the former technique was used. Comparison between the mass accuracy using dual-ESI-sprayer, dual-nozzle TOF-MS and that obtained using a double-focusing mass spectrometer operating under chemical ionization (CI) and fast atom bombardment (FAB) shows the suitability of the technique for elemental-composition confirmation. Approximately 85% of samples analyzed had mass errors of less than 5 ppm, and the other 15% had mass errors less than 8 ppm. Using a high-performance liquid chromatography (HPLC) as a device for introduction of one liquid stream (sample) and a syringe pump as a device for introduction of the second liquid stream (reference standard), the accurate mass of a tryptic digest of cytochrome c was measured. The range of mass errors was from -6.1 ppm to +3.6 ppm, a significant improvement over our previously reported mass accuracy for this digest using single-nozzle TOF-MS. The interactions between analytes in the liquid streams also were investigated using a variety of sample-introduction and nozzle-design combinations, including single-ESI-sprayer, single-nozzle; dual-ESI-sprayer, single-nozzle; dual-ESI-sprayer, Y-shaped inlet; and dual-ESI-sprayer, dual-inlet. The results demonstrated that the dual-ESI-sprayer, dual-inlet design provides reference peaks on every acquisition with minimum analyte-reference interaction and, therefore, higher consistent mass accuracy.