A survey on stereo vision matching algorithms

Stereo matching is an important research topic in the field of stereo vision. According to the stereo matching information, stereo matching algorithms can be divided into local, global, and semi-global algorithms. This paper summarizes the advantages and shortcomings of these matching algorithms. An experimental platform is set up for health care, and some matching algorithms are tested. Experimental results demonstrate that the dimensionality reduction and minimum spanning tree algorithm outperform guided filter and binary method in terms of both accuracy and speed.

[1]  Narendra Ahuja,et al.  A constant-space belief propagation algorithm for stereo matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  H. Hirschmüller Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Stereo Processing by Semi-global Matching and Mutual Information , 2022 .

[3]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Marsha Jo Hannah,et al.  Computer matching of areas in stereo images. , 1974 .

[5]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[6]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[7]  Qingxiong Yang,et al.  Recursive Bilateral Filtering , 2012, ECCV.

[8]  Jun Xiao,et al.  Segment-based stereo matching using edge dynamic programming , 2010, 2010 3rd International Congress on Image and Signal Processing.

[9]  Reinhard Klette,et al.  Half-resolution semi-global stereo matching , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[10]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[11]  Qingxiong Yang,et al.  A non-local cost aggregation method for stereo matching , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Stefano Mattoccia,et al.  Linear stereo matching , 2011, 2011 International Conference on Computer Vision.

[13]  Minh N. Do,et al.  Joint Histogram-Based Cost Aggregation for Stereo Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Rafael Cabeza,et al.  Near Real-Time Stereo Matching Using Geodesic Diffusion , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Pierre Boulanger,et al.  Radiometric invariant stereo matching based on relative gradients , 2012, 2012 19th IEEE International Conference on Image Processing.

[16]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[17]  Ruigang Yang,et al.  Global stereo matching leveraged by sparse ground control points , 2011, CVPR 2011.

[18]  Heiko Hirschmüller,et al.  Evaluation of Cost Functions for Stereo Matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Johannes Stallkamp,et al.  Real-time stereo vision: Optimizing Semi-Global Matching , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[20]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[21]  Xing Mei,et al.  Stereo Matching with Reliable Disparity Propagation , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[22]  Lifeng Sun,et al.  Binary stereo matching , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[23]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Miao Liao,et al.  High-Quality Real-Time Stereo Using Adaptive Cost Aggregation and Dynamic Programming , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[25]  Manu Bansal,et al.  A Wavelet-Based Multiresolution Approach to Solve the Stereo Correspondence Problem Using Mutual Information , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Margrit Gelautz,et al.  Local stereo matching using geodesic support weights , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[28]  Jae Wook Jeon,et al.  Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[29]  Truong Q. Nguyen,et al.  Local Disparity Estimation With Three-Moded Cross Census and Advanced Support Weight , 2013, IEEE Transactions on Multimedia.

[30]  Vladimir Kolmogorov,et al.  Visual correspondence using energy minimization and mutual information , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Manuel M. Oliveira,et al.  Domain transform for edge-aware image and video processing , 2011, SIGGRAPH 2011.

[33]  Federico Tombari,et al.  Segmentation-Based Adaptive Support for Accurate Stereo Correspondence , 2007, PSIVT.

[34]  N. Lu,et al.  Matching Cost Filtering for Dense Stereo Correspondence , 2013 .

[35]  Ming Zhao,et al.  Improved adaptive stereo matching using double dynamic programming with correlation of row and column , 2010, 2010 2nd International Conference on Signal Processing Systems.

[36]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Andrew Blake,et al.  LogCut - Efficient Graph Cut Optimization for Markov Random Fields , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[39]  Pedro F. Felzenszwalb,et al.  Efficient belief propagation for early vision , 2004, CVPR 2004.

[40]  Christos Stentoumis,et al.  A LOCAL ADAPTIVE APPROACH FOR DENSE STEREO MATCHING IN ARCHITECTURAL SCENE RECONSTRUCTION , 2013 .

[41]  Neil A. Dodgson,et al.  Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid , 2010, ECCV.

[42]  Cevahir Çigla,et al.  Efficient edge-preserving stereo matching , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[43]  Heiko Hirschmüller,et al.  Stereo Vision in Structured Environments by Consistent Semi-Global Matching , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).