On the Complexity of Computing Mixed Volumes

This paper gives various (positive and negative) results on the complexity of the problem of computing and approximating mixed volumes of polytopes and more general convex bodies in arbitrary dimension. On the negative side, we present several $\#\P$-hardness results that focus on the difference of computing mixed volumes versus computing the volume of polytopes. We show that computing the volume of zonotopes is $\#\P$-hard (while each corresponding mixed volume can be computed easily) but also give examples showing that computing mixed volumes is hard even when computing the volume is easy. On the positive side, we derive a randomized algorithm for computing the mixed volumes $$ V(\overbrace{K_1\ld K_1}^{m_1}, \overbrace{K_2,\dots,K_2}^{m_2},\dots,\overbrace{K_s,\dots,K_s}^{m_s}) $$ of well-presented convex bodies $K_1,\dots,K_s$, where $m_1,\dots,m_s \in \N_0$ and $m_1 \geq n-\psi(n)$ with $\psi(n)=o(\frac{\log n}{\log \log n})$. The algorithm is an interpolation method based on polynomial-time randomized algorithms for computing the volume of convex bodies. This paper concludes with applications of our results to various problems in discrete mathematics, combinatorics, computational convexity, algebraic geometry, geometry of numbers, and operations research.

[1]  Rolf Schneider,et al.  Polytopes and Brunn-Minkowski Theory , 1994 .

[2]  Mihalis Yannakakis,et al.  On recognizing integer polyhedra , 1990, Comb..

[3]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[4]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[5]  Ulrich Betke,et al.  Mixed volumes of polytopes , 1992 .

[6]  Phillip H. Schmidt,et al.  Computing volumes of polyhedra , 1986 .

[7]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..

[8]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[9]  Miklós Simonovits,et al.  The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[10]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.

[11]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[12]  J. Canny,et al.  Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .

[13]  T. J. Rivlin,et al.  Optimally Stable Lagrangian Numerical Differentiation , 1975 .

[14]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[15]  H. E. Salzer,et al.  Some problems in optimally stable Lagrangian differentiation , 1974 .

[16]  Peter Gritzmann,et al.  Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Basis , 1993, SIAM J. Discret. Math..

[17]  J. Maurice Rojas,et al.  Counting Affine Roots of Polynomial Systems via Pointed Newton Polytopes , 1996, J. Complex..

[18]  Andrei Z. Broder,et al.  How hard is it to marry at random? (On the approximation of the permanent) , 1986, STOC '86.

[19]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[20]  DyerMartin,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991 .

[21]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[22]  J. Lawrence Polytope volume computation , 1991 .

[23]  Martin E. Dyer,et al.  On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..

[24]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[25]  B. M. Fulk MATH , 1992 .

[26]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[27]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[28]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.

[29]  J. Maurice Rojas,et al.  A Convex Geometric Approach to Counting the Roots of a Polynomial System , 1994, Theor. Comput. Sci..

[30]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[31]  Leonid Khachiyan,et al.  On the complexity of approximating the maximal inscribed ellipsoid for a polytope , 1993, Math. Program..

[32]  George Miel,et al.  On the condition number of Lagrangian numerical differentiation , 1985 .

[33]  Peter McMullen,et al.  Polytopes: Abstract, Convex and Computational , 1994 .

[34]  M. Dyer Computing the volume of convex bodies : a case where randomness provably helps , 1991 .

[35]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[36]  Ronald Cools,et al.  Nonlinear reduction for solving deficient polynomial systems by continuation methods , 1992 .

[37]  J. Verschelde,et al.  Symmetrical Newton Polytopes for Solving Sparse Polynomial Systems , 1995 .

[38]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[39]  Katta G. Murty,et al.  Some NP-complete problems in linear programming , 1982, Oper. Res. Lett..

[40]  J. Maurice Rojas,et al.  An optimal condition for determining the exact number of roots of a polynomial system , 1991, ISSAC '91.

[41]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[42]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[43]  Richard P. Stanley,et al.  Two Combinatorial Applications of the Aleksandrov-Fenchel Inequalities , 1981, J. Comb. Theory, Ser. A.

[44]  Andrei Zelevinsky,et al.  Newton polytopes of the classical resultant and discriminant , 1990 .

[45]  G. C. Shephard Combinatorial Properties of Associated Zonotopes , 1974, Canadian Journal of Mathematics.

[46]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[47]  Peter Winkler,et al.  Counting linear extensions is #P-complete , 1991, STOC '91.

[48]  Coert Olmsted Two formulas for the general multivariate polynomial which interpolates a regular grid on a simplex , 1986 .

[49]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[50]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[51]  Ulrich Betke,et al.  Approximating the volume of convex bodies , 1993, Discret. Comput. Geom..

[52]  Zoltán Füredi,et al.  Computing the volume is difficult , 1986, STOC '86.

[53]  Jacques Cohen,et al.  Two Algorithms for Determining Volumes of Convex Polyhedra , 1979, JACM.

[54]  Richard P. Stanley,et al.  A Zonotope Associated with Graphical Degree Sequences , 1990, Applied Geometry And Discrete Mathematics.

[55]  Ioannis Z. Emiris,et al.  Monomial bases and polynomial system solving , 1994, ISSAC 1994.

[56]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[57]  P. Gritzmann,et al.  Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .

[58]  E. Ehrhart,et al.  Polynômes arithmétiques et méthode des polyèdres en combinatoire , 1974 .

[59]  Alexander I. Barvinok,et al.  A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.

[60]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[61]  John F. Canny,et al.  An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.