Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir

We propose a method of frequency and phase control of optical bistability in a unidirectional ring cavity containing a semiconductor structure which is characterized as a ladder three-level system. The system interacts with a coherent probe field, and a control field which consists of a strong coherent field and a weak amplitude-fluctuating stochastic field. A perturbative solution of the master equation of the system allows to eliminate the stochastic field and provides a physical picture in terms of correlation properties of the stochastic field. We find that the bistable response can be modified strongly by means of the amplitude, the frequency and the phase of the stochastic field. In order to illustrate the feasibility of the results, we use parameter values corresponding to an semiconductor quantum dot (QD). This investigation may be used to optimize and control the optical switching process in the QD solid-state system, which is much more practical than that in atomic systems.

[1]  S. Melle,et al.  All-optical switching and storage in a four-level tripod-type atomic system , 2006 .

[2]  Shun Lien Chuang,et al.  Room-temperature slow light with semiconductor quantum-dot devices. , 2006, Optics letters.

[3]  Vl. V. Kocharovsky,et al.  Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence , 2001 .

[4]  Stephan W Koch,et al.  Many-body effects in the gain spectra of highly excited quantum-dot lasers , 2001 .

[5]  Hailin Wang,et al.  Spin coherence and electromagnetically induced transparency via exciton correlations. , 2002, Physical review letters.

[6]  D. Walls,et al.  Optical bistability from three-level atoms , 1981 .

[7]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[8]  F. Carreño,et al.  Optical bistability in V-type atoms driven by a coherent field in a broadband squeezed vacuum , 2003 .

[9]  Jin-Yue Gao,et al.  Ultrafast all optical switching via tunable Fano interference. , 2005, Physical review letters.

[10]  Jiahua Li Coherent control of optical bistability in tunnel-coupled double quantum wells , 2007 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Hailin Wang,et al.  Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well. , 2003, Optics letters.

[13]  B. Ham Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates , 2001 .

[14]  Shun Lien Chuang,et al.  Variable semiconductor all-optical buffer , 2002 .

[15]  H. M. Gibbs,et al.  Differential Gain and Bistability Using a Sodium-Filled Fabry-Perot Interferometer , 1976 .

[16]  Andreas Heuer,et al.  Light-shift-induced level crossing and resonatorless optical bistability in sodium vapor , 1997 .

[17]  C. Chang-Hasnain,et al.  Slow-light in semiconductor quantum wells , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[18]  C. Xie,et al.  Controlled shift of optical bistability hysteresis curve and storage of optical signals in a four-level atomic system. , 2004, Physical review letters.

[19]  Photon statistics of a bistable absorber , 1978 .

[20]  O. G. Calderón,et al.  Optical bistability using quantum interference in V -type atoms , 2002 .

[21]  Arthur C. Gossard,et al.  Tunneling induced transparency: Fano interference in intersubband transitions , 1997 .

[22]  Hai Wang,et al.  Bistability and instability of three-level atoms inside an optical cavity , 2001 .

[23]  M. Xiao,et al.  Cavity-linewidth narrowing by means of electromagnetically induced transparency. , 2000, Optics letters.

[24]  Connie Chang-Hasnain,et al.  Room temperature slow light in a quantum-well waveguide via coherent population oscillation. , 2005, Optics express.

[25]  Hai Wang,et al.  Controlling light by light with three-level atoms inside an optical cavity. , 2002, Optics letters.

[26]  D. Walls,et al.  A coherent nonlinear mechanism for optical bistability from three level atoms , 1980 .

[27]  Agarwal,et al.  Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Adi R. Bulsara,et al.  Spectrum and dynamic-response function of transmitted light in the absorptive optical bistability , 1980 .

[29]  Shun Lien Chuang,et al.  Variable optical buffer using slow light in semiconductor nanostructures , 2003, Proc. IEEE.

[30]  A. Zibrov,et al.  Dynamic optical bistability in resonantly enhanced Raman generation , 2004, quant-ph/0404065.

[31]  C. Sirtori,et al.  Laser-induced quantum coherence in a semiconductor quantum well. , 2000, Physical review letters.

[32]  Zhi‐zhan Xu,et al.  Optical bistability via a phase fluctuation effect of the control field , 1996 .

[33]  M. Xiao,et al.  Dynamical hysteresis in a three-level atomic system. , 2005, Optics letters.

[34]  K. Osman,et al.  Phase switching and quantum interference in a 3-level Λ-shape bistable model , 2006 .

[35]  Thompson,et al.  Optical bistability and photon statistics in cavity quantum electrodynamics. , 1991, Physical review letters.

[36]  W. Pötz Double-slit versus single-slit behavior in the intersubband absorption of semiconductor heterostructures , 2005 .

[37]  Andrew G. Glen,et al.  APPL , 2001 .

[38]  Jiahua Li,et al.  Controllable optical bistability in a four-subband semiconductor quantum well system , 2007 .

[39]  Shun Lien Chuang,et al.  Slow light using semiconductor quantum dots , 2004 .

[40]  F. Bassani,et al.  Electromagnetically induced transparency in asymmetric double quantum wells , 2002 .

[41]  Li Zhang,et al.  Effect of correlated noises in an optical bistable system , 2008 .

[42]  L. Orozco,et al.  Time-dependent electric field fluctuations at the subphoton level , 2002 .

[43]  S. Gong,et al.  Optical bistability via amplitude and phase control of a microwave field , 2006 .

[44]  H. Kimble,et al.  Intrinsic Dynamical Instability in Optical Bistability with Two-Level Atoms , 1984 .

[45]  L. Lugiato,et al.  Photon Statistics and Spectrum of Transmitted Light in Optical Bistability , 1978 .

[46]  Zhi‐zhan Xu,et al.  Optical bistability via atomic coherence , 1997 .

[47]  M. Xiao,et al.  Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system , 2003 .

[48]  Rajeev J. Ram,et al.  All-optical wavelength converter and switch based on electromagnetically induced transparency , 2000 .

[49]  Min Xiao,et al.  Optical multistability in three-level atoms inside an optical ring cavity. , 2003, Physical review letters.

[50]  Andrew J. W. Brown,et al.  Controlling optical bistability in a three-level atomic system , 2003 .

[51]  Lindberg,et al.  Effective Bloch equations for semiconductors. , 1988, Physical review. B, Condensed matter.

[52]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[53]  S. Cecchi,et al.  Observation of Optical Tristability in Sodium Vapors , 1982 .

[54]  Zhi‐zhan Xu,et al.  Phase control of amplitude-fluctuation-induced bistability , 2001 .

[55]  F. Arecchi,et al.  A new class of optical multistabilities and instabilities induced by atomic coherence , 1983 .

[56]  J. Mørk,et al.  Numerical investigation of electromagnetically induced transparency in a quantum dot structure. , 2007, Optics express.

[57]  M. Xiao,et al.  Hysteresis loop with controllable shape and direction in an optical ring cavity , 2004 .

[58]  M. Xiao,et al.  Optical bistability in a three-level semiconductor quantum-well system , 2004 .

[59]  W. Chow,et al.  Theory of quantum-coherence phenomena in semiconductor quantum dots , 2003 .