Roadmap for a Smart Factory: A Modular, Intelligent Concept for the Production of Specialty Chemicals.

Digitalization and increasing the flexibility of production concepts offer the possibility to react to market challenges in the field of specialty chemicals. Shorter product lifetimes, increasing product individualization, and the resulting market volatility impose new requirements on plant operators. Novel concepts such as modular production plants and developments in digitalization (Industry 4.0) are able to assist the implementation of smart factories in specialty chemicals. These essential concepts will be presented in this Minireview.

[1]  Sebastian Engell,et al.  Batch to Conti Transfer of Polymer Production Processes , 2016 .

[2]  Stephan Kessler,et al.  Neue Produktionskonzepte für die Prozessindustrie erfordern modularisierte Logistiklösungen , 2015 .

[3]  Marcus Grünewald,et al.  Net Present Value Analysis of Modular Chemical Production Plants , 2011 .

[4]  Asterios Gavriilidis,et al.  Scalable Reactor Design for Pharmaceuticals and Fine Chemicals Production. 1: Potential Scale-up Obstacles , 2006 .

[5]  Christian Bramsiepe,et al.  Selection of Technical Reactor Equipment for Modular, Continuous Small-Scale Plants , 2014 .

[6]  Sigurd Buchholz,et al.  Future manufacturing approaches in the chemical and pharmaceutical industry , 2010 .

[7]  David W.T. Rippin,et al.  Batch process systems engineering: A retrospective and prospective review , 1993 .

[8]  Paul Watts,et al.  Micro reactors: principles and applications in organic synthesis , 2002 .

[9]  Heinz A. Preisig,et al.  Theory and application of the modulating function method—I. Review and theory of the method and theory of the spline-type modulating functions , 1993 .

[10]  Günter Wozny,et al.  Multikriterielle Aspekte der Modularisierung bei der Planung verfahrenstechnischer Anlagen , 2012 .

[11]  Marcus Grünewald,et al.  Erhöhung der Wirtschaftlichkeit durch beschleunigte Produkt‐ und Prozessentwicklung mit Hilfe modularer und skalierbarer Apparate , 2012 .

[12]  Gerhard Schembecker,et al.  Information Technologies for Innovative Process and Plant Design , 2014 .

[13]  Axel Haller,et al.  Namur Modul Type Package – Definition , 2016 .

[14]  Christian Bramsiepe,et al.  Planungsansatz für modulare Anlagen in der chemischen Industrie , 2017 .

[15]  Gerhard Schembecker,et al.  Low-cost small scale processing technologies for production applications in various environments-Mass produced factories , 2012 .

[16]  Gerhard Schembecker,et al.  Small scale, modular and continuous: A new approach in plant design , 2012 .

[17]  Norbert Kockmann Modulare chemische Reaktoren für die Prozessentwicklung und Produktion in kontinuierlichen Mehrzweckanlagen , 2015 .

[18]  Thomas Bayer,et al.  IMPULSE – Ein neuartiger Ansatz für die Prozessentwicklung , 2004 .

[19]  Marcus Grünewald,et al.  Modulare Verfahrenstechnik: Neue Anforderungen an die ApparateentwicklungModular Process Engineering: New Challenges for Apparatus Engineering Development , 2012 .

[20]  Stefan Lier,et al.  Real options-based evaluation model for transformable plant designs in the process industry , 2017 .

[21]  Marcus Grünewald,et al.  Wandlungsfähige Produktionskonzepte: Flexibel, Mobil, Dezentral, Modular, Beschleunigt , 2015 .

[22]  S. Y. Wong,et al.  On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system , 2016, Science.

[23]  Gerhard Schembecker,et al.  Die 50 %‐Idee: Vom Produkt zur Produktionsanlage in der halben Zeit , 2009 .

[24]  Marcus Grünewald,et al.  Modular Process Engineering: Development of Apparatuses for Transformable Production Systems , 2017 .

[25]  Marcus Grünewald,et al.  Development and characterization of a modular absorption column for transformable plants , 2015 .

[26]  José M. Asua,et al.  Challenges and Opportunities in Continuous Production of Emulsion Polymers: a Review , 2016 .

[27]  Marcus Grünewald,et al.  Innovative scaling strategies for a fast development of apparatuses by modular process engineering , 2018 .

[28]  Holger Fröhlich,et al.  Efficient Engineering and Production Concepts for Products in Regulated Environments – Dream or Nightmare? , 2014 .

[29]  Marcus Grünewald,et al.  Potential analysis model for case specific quantification of the degree of eligibility of innovative production concepts in the process industry , 2015 .

[30]  Norbert Kockmann,et al.  Scale-up-fähiges Equipment für die Prozessentwicklung , 2012 .

[31]  D. Schmalz,et al.  Kontinuierliche Produktion von Pharmawirkstoffen: Paradigmenwechsel in einer regulierten Branche , 2016 .

[32]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[33]  Volker Hessel,et al.  Numbering up von Mikroreaktoren: Ein neues Flüssigkeitsverteilsystem , 2004 .

[34]  Nilay Shah,et al.  Process industry supply chains: Advances and challenges , 2005, Comput. Chem. Eng..

[35]  Gerhard Schembecker,et al.  Wissensbasierte Erstellung von R&I‐Fließbildern , 2012 .

[36]  Gerhard Schembecker,et al.  Die 50 %-Idee: Modularisierung im Planungsprozess , 2012 .

[37]  Stefan Lier,et al.  Standort‐ und Netzwerkplanung für modulare Containeranlagen in der Prozessindustrie , 2015 .

[38]  Stefan Lier,et al.  Modularisierung und automatische Anordnungsplanung der Intralogistik für modulare Containeranlagen in der Prozessindustrie , 2015 .

[39]  F. Stenger,et al.  Flexible Chemical Production by Modularization and Standardization: Status Quo and Future Trends , 2016 .