An Econometric Analysis of Emission Trading Allowances

World power and gas markets have a natural relationship with global tradable carbon permits markets, including the U.S. Clean Air Act Amendments and the EU Emissions Trading Scheme, the latter officially launched in January 2005. Electric utilities operate their power plants based in part on the price of the power and the relative cost of coal and natural gas. As both carbon dioxide and sulphur dioxide are by-products of the coal burning process, the new factors of SO2 and CO2 emissions allowances come into play in a carbon constrained economy. Now that a price has been put on such allowances, the differences in carbon intensity for coal and gas could potentially change the way companies run their power plants. Moreover, knowledge of the statistical distribution of emission trading allowances, and its forecastability, becomes crucial in constructing optimal hedging and purchasing strategies in the carbon market. This paper provides an in-depth analysis of available data addressing the unconditional tail behavior and the inherent heteroskedastic dynamics in the returns on the emissions allowances.

[1]  Svetlozar T. Rachev,et al.  Unconditional and Conditional Distributional Models for the Nikkei Index , 1998 .

[2]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[3]  Jon Danielsson,et al.  The method of moments ratio estimator for the tail shape parameter , 1996 .

[4]  Alan L. Tucker,et al.  The Probability Distribution of Foreign Exchange Price Changes: Tests of Candidate Processes , 1988 .

[5]  Jeroen V. K. Rombouts,et al.  Multivariate Mixed Normal Conditional Heteroskedasticity , 2006, Comput. Stat. Data Anal..

[6]  Marc S. Paolella,et al.  Stationarity of stable power-GARCH processes , 2002 .

[7]  A. Denny Ellerman,et al.  Lessons from Phase 2 compliance with the U.S. Acid Rain Program , 2003 .

[8]  Emese Lazar,et al.  Asymmetries and Volatility Regimes in the European Equity Markets , 2005 .

[9]  J. McCulloch,et al.  Interest-risk sensitive deposit insurance premia: Stable ACH estimates , 1985 .

[10]  Marc S. Paolella,et al.  A simple estimator for the characteristic exponent of the stable Paretian distribution , 1999 .

[11]  F. Diebold,et al.  Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management , 1998 .

[12]  W. DuMouchel On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution , 1973 .

[13]  Marc S. Paolella,et al.  Multivariate Normal Mixture GARCH , 2006 .

[14]  A. Dekkers,et al.  Optimal choice of sample fraction in extreme-value estimation , 1993 .

[15]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[16]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[17]  Charles M. Goldie,et al.  SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS , 1987 .

[18]  Yong Bao,et al.  Evaluating Predictive Performance of Value-at-Risk Models in Emerging Markets: A Reality Check , 2006 .

[19]  Javier Estrada,et al.  Empirical distributions of stock returns: European securities markets, 1990-95 , 1997 .

[20]  David Ruppert Statistics and Finance , 2004 .

[21]  Eric Zivot,et al.  Statistics and Finance: An Introduction , 2006 .

[22]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[23]  R. Hertwig,et al.  Decisions from Experience and the Effect of Rare Events in Risky Choice , 2004, Psychological science.

[24]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[25]  Michael Kirchler,et al.  Fat tails and volatility clustering in experimental asset markets , 2007 .

[26]  D. Mason Laws of Large Numbers for Sums of Extreme Values , 1982 .

[27]  James B. McDonald,et al.  14 Probability distributions for financial models , 1996 .

[28]  E. M. Bailey INTERTEMPORAL PRICING OF SULFUR DIOXIDE ALLOWANCES , 1998 .

[29]  Giovanni Barone-Adesi,et al.  Backtesting Derivative Portfolios with Filtered Historical Simulation (Fhs) , 2002 .

[30]  Paul L. Joskow,et al.  The Political Economy of Market‐Based Environmental Policy: the U.S. Acid Rain Program1 , 1998, The Journal of Law and Economics.

[31]  S. Resnick,et al.  Smoothing the Hill estimator , 1997 .

[32]  Campbell R. Harvey,et al.  Current Version : April 6 , 1999 Autoregressive Conditional Skewness , 1999 .

[33]  Marc S. Paolella,et al.  Diagnosing and treating the fat tails in financial returns data , 2000 .

[34]  W. DuMouchel Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .

[35]  T. Tietenberg Emissions Trading: Principles and Practice , 2006 .

[36]  Marcia M. A. Schafgans,et al.  The tail index of exchange rate returns , 1990 .

[37]  Eric R. Ziegel,et al.  Analysis of Financial Time Series , 2002, Technometrics.

[38]  Sonja Peterson,et al.  The determinants of allowance prices in the European Emissions Trading Scheme - Can we expect an efficient allowance market 2008? , 2007 .

[39]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[40]  Luc Bauwens,et al.  Bayesian Inference for the Mixed Conditional Heteroskedasticity Model , 2005 .

[41]  S. Resnick,et al.  The qq-estimator and heavy tails , 1996 .

[42]  David R. Anderson,et al.  Bayesian Methods in Cosmology: Model selection and multi-model inference , 2009 .

[43]  Marc S. Paolella,et al.  Conditional density and value‐at‐risk prediction of Asian currency exchange rates , 2000 .

[44]  Alan H. Welsh,et al.  Best Attainable Rates of Convergence for Estimates of Parameters of Regular Variation , 1984 .

[45]  Giovanni Barone-Adesi,et al.  VaR without correlations for portfolios of derivative securities , 1999 .

[46]  Pierre Giot,et al.  Modelling daily value-at-risk using realized volatility and arch type models , 2001 .

[47]  Eric Jondeau,et al.  Entropy Densities: With an Application to Autoregressive Conditional Skewness and Kurtosis , 2001 .

[48]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[49]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[50]  Marc S. Paolella,et al.  Mixed Normal Conditional Heteroskedasticity , 2004 .

[51]  The magnitude of a market crash can be predicted , 2006 .

[52]  Marc S. Paolella Testing the stable Paretian assumption , 2001 .

[53]  Kurt Brännäs,et al.  Conditional skewness modelling for stock returns , 2003 .

[54]  Amy Hing-Ling Lau,et al.  The Distribution of Stock Returns: New Evidence against the Stable Model , 1990 .

[55]  Marc S. Paolella,et al.  A New Approach to Markov-Switching GARCH Models , 2004 .

[56]  James D. Hamilton A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions , 1991 .

[57]  K. Dowd Measuring Market Risk , 2002 .

[58]  Marc S. Paolella Intermediate Probability: A Computational Approach , 2007 .

[59]  T. Cason,et al.  Emissions variability in tradable permit markets with imperfect enforcement and banking , 2006 .

[60]  Carol Alexander,et al.  Normal Mixture Garch(1,1): Applications to Exchange Rate Modelling , 2004 .

[61]  Peter Christoffersen,et al.  Elements of Financial Risk Management , 2003 .

[62]  C. D. Vries,et al.  The Limiting Distribution of Extremal Exchange Rate Returns , 1991 .

[63]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[64]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[65]  Marc S. Paolella,et al.  Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions , 2003 .

[66]  Bayesian Inference for the Mixed Conditional Heteroskedasticity Model , 2005 .

[67]  Arie Preminger,et al.  Regime Switching GARCH Models , 2006 .

[68]  Marc S. Paolella,et al.  Analyzing and Exploiting Asymmetries in the News Impact Curve , 2006 .

[69]  J. Huston McCulloch,et al.  13 Financial applications of stable distributions , 1996 .

[70]  Parametric models for partially adaptive estimation with skewed and leptokurtic residuals , 1991 .

[71]  Thomas Lux,et al.  The stable Paretian hypothesis and the frequency of large returns: an examination of major German stocks , 1996 .

[72]  Svetlozar T. Rachev,et al.  A tail estimator for the index of the stable paretian distribution , 1998 .

[73]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[74]  Yong Bao,et al.  A Test for Density Forecast Comparison with Applications to Risk Management , 2004 .

[75]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[76]  Philip A. Stork,et al.  Differences between foreign exchange rate regimes: the view from the tails , 1992 .

[77]  A. Ellerman,et al.  Explaining low sulfur dioxide allowance prices : the effect of expectation errors and irreversibility , 1998 .

[78]  M. Marchesi,et al.  VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A MICROSIMULATION OF INTERACTING AGENTS , 2000 .