Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems.

Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).

[1]  Time-Local Equation for the Exact Optimized Effective Potential in Time-Dependent Density Functional Theory. , 2017, Physical review letters.

[2]  Angel Rubio,et al.  Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods. , 2018, Journal of chemical theory and computation.

[3]  M. Casula,et al.  Density functional theory beyond the linear regime: Validating an adiabatic local density approximation , 2011, 1101.2564.

[4]  T. Gorni,et al.  Spin dynamics from time-dependent density functional perturbation theory , 2018, The European Physical Journal B.

[5]  A. Stathopoulos,et al.  Solution of large eigenvalue problems in electronic structure calculations , 1996 .

[6]  I. I. Mazin,et al.  Correlated metals and the LDA+U method , 2002, cond-mat/0206548.

[7]  Á. Rubio,et al.  Setting the clock of photoelectron emission through molecular alignment , 2018, 1802.06622.

[8]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[9]  High-order density-matrix perturbation theory , 2003, cond-mat/0307603.

[10]  G. Vignale,et al.  Functional theories of thermoelectric phenomena , 2016, Journal of Physics: Condensed Matter.

[11]  Krieger,et al.  Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[13]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[14]  H. Appel,et al.  Light–Matter Response in Nonrelativistic Quantum Electrodynamics , 2018, ACS photonics.

[15]  L. Sandratskii,et al.  Different dimensionality trends in the Landau damping of magnons in iron, cobalt, and nickel: Time-dependent density functional study , 2011, 1109.6217.

[16]  P. Narang,et al.  Cavity-Correlated Electron-Nuclear Dynamics from First Principles. , 2018, Physical review letters.

[17]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[18]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[19]  T. Ebbesen Hybrid Light-Matter States in a Molecular and Material Science Perspective. , 2016, Accounts of chemical research.

[20]  J. Jornet-Somoza,et al.  Real-Time Propagation TDDFT and Density Analysis for Exciton Coupling Calculations in Large Systems , 2019, Journal of chemical theory and computation.

[21]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent‐excluding surface , 1994, J. Comput. Chem..

[22]  M. Dion,et al.  Erratum: Van der Waals Density Functional for General Geometries [Phys. Rev. Lett. 92, 246401 (2004)] , 2005 .

[23]  Ghosh,et al.  Density-functional theory for time-dependent systems. , 1987, Physical review. A, General physics.

[24]  J. K. Dewhurst,et al.  Adiabatic generalized gradient approximation kernel in time-dependent density functional theory , 2018, Physical Review B.

[25]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[26]  Valentino R. Cooper,et al.  Van der Waals density functional: an appropriate exchange functional , 2009, 0910.1250.

[27]  K. Burke,et al.  Perdew, Burke, and Ernzerhof Reply: , 1998 .

[28]  J. Berger,et al.  Fully Parameter-Free Calculation of Optical Spectra for Insulators, Semiconductors, and Metals from a Simple Polarization Functional. , 2015, Physical review letters.

[29]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[30]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[31]  Krieger,et al.  Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  Angel Rubio,et al.  Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries , 2014 .

[33]  Franco Nori,et al.  Ultrastrong coupling between light and matter , 2018, Nature Reviews Physics.

[34]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[35]  Á. Rubio,et al.  Multiple-orbital effects in laser-induced electron diffraction of aligned molecules , 2018, Physical Review A.

[36]  Dressed-Orbital Approach to Cavity Quantum Electrodynamics and Beyond , 2018, 1812.00388.

[37]  Micael J. T. Oliveira,et al.  Self-consistent DFT +U method for real-space time-dependent density functional theory calculations , 2017, 1711.08935.

[38]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[39]  X. Gonze,et al.  Density-operator theory of orbital magnetic susceptibility in periodic insulators , 2011, 1108.1732.

[40]  Joel E. Moore,et al.  Orbital magnetoelectric coupling in band insulators , 2010, 1002.0290.

[41]  Johannes Neugebauer,et al.  Chromophore-specific theoretical spectroscopy: From subsystem density functional theory to mode-specific vibrational spectroscopy , 2010 .

[42]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[43]  Kun Cao,et al.  Ab initio calculation of spin fluctuation spectra using time-dependent density functional perturbation theory, plane waves, and pseudopotentials , 2017, 1707.05219.

[44]  P. Narang,et al.  Strong light-matter coupling in quantum chemistry and quantum photonics , 2018, Nanophotonics.

[45]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[46]  R. Woolley Molecular quantum electrodynamics , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  A.M.K. Müller,et al.  Explicit approximate relation between reduced two- and one-particle density matrices , 1984 .

[48]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  C. Rozzi,et al.  Nonequilibrium Solvent Polarization Effects in Real-Time Electronic Dynamics of Solute Molecules Subject to Time-Dependent Electric Fields: A New Feature of the Polarizable Continuum Model , 2019, Journal of chemical theory and computation.

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[52]  Roberto Cammi,et al.  Equation of motion for the solvent polarization apparent charges in the polarizable continuum model: application to real-time TDDFT. , 2015, The journal of physical chemistry. A.

[53]  T. Oka,et al.  Floquet Engineering of Quantum Materials , 2018, Annual Review of Condensed Matter Physics.

[54]  A. Eiguren,et al.  Efficient computation of magnon dispersions within time-dependent density functional theory using maximally localized Wannier functions , 2012 .

[55]  Angel Rubio,et al.  Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[57]  Xavier Andrade,et al.  Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods. , 2013, Journal of chemical theory and computation.

[58]  Xavier Andrade,et al.  Modified Ehrenfest Formalism for Efficient Large-Scale ab initio Molecular Dynamics. , 2008, Journal of chemical theory and computation.

[59]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[60]  F. García-Vidal,et al.  Polaritonic Chemistry with Organic Molecules , 2017 .

[61]  Á. Rubio,et al.  Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT , 2016, The European Physical Journal B.

[62]  Andreas Meister,et al.  Numerik linearer Gleichungssysteme , 1999 .

[63]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[64]  Stephan Kümmel,et al.  Simple iterative construction of the optimized effective potential for orbital functionals, including exact exchange. , 2003, Physical review letters.

[65]  U. Giovannini Pump-Probe Photoelectron Spectra , 2018 .

[66]  H. Appel,et al.  Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space , 2015, Proceedings of the National Academy of Sciences.

[67]  R. Ribeiro,et al.  Polariton chemistry: controlling molecular dynamics with optical cavities , 2018, Chemical science.

[68]  Mook Ha,et al.  Neutron-scattering measurement of the spin-wave spectra for nickel. , 1985 .

[69]  Rubio,et al.  Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors. , 1996, Physical review. B, Condensed matter.

[70]  H. Appel,et al.  Light–Matter Response in Nonrelativistic Quantum Electrodynamics , 2019, ACS photonics.

[71]  S. Blanes,et al.  Fourth-and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems , 2006 .

[72]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[73]  H. Appel,et al.  Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics with multitrajectory Ehrenfest dynamics , 2019, Physical Review A.

[74]  P. Lee,et al.  Unified formalism for calculating polarization, magnetization, and more in a periodic insulator , 2011, 1108.6122.

[75]  R. Leeuwen The Sham-Schlüter equation in time-dependent density-functional theory. , 1996 .

[76]  Á. Rubio,et al.  Monitoring Electron-Photon Dressing in WSe2. , 2016, Nano letters.

[77]  Jeremy J. Baumberg,et al.  Extreme nanophotonics from ultrathin metallic gaps , 2019, Nature Materials.

[78]  H. Appel,et al.  Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. , 2014, Physical review letters.

[79]  Mario Piris,et al.  Iterative diagonalization for orbital optimization in natural orbital functional theory , 2009, J. Comput. Chem..

[80]  K. Berland,et al.  van der Waals forces in density functional theory: a review of the vdW-DF method , 2014, Reports on progress in physics. Physical Society.

[81]  H. Hübener,et al.  Floquet analysis of excitations in materials , 2019, Journal of Physics: Materials.

[82]  G. Bertsch,et al.  Magnetic circular dichroism in real-time time-dependent density functional theory. , 2010, The Journal of chemical physics.

[83]  Xavier Andrade,et al.  Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. , 2007, The Journal of chemical physics.

[84]  Á. Rubio,et al.  Phonon Driven Floquet Matter. , 2018, Nano letters.

[85]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[86]  M. Desjarlais,et al.  On the transport coefficients of hydrogen in the inertial confinement fusion regime a) , 2011 .

[87]  P. Hyldgaard,et al.  libvdwxc: a library for exchange–correlation functionals in the vdW-DF family , 2017, 1703.06999.

[88]  N. Vast,et al.  Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory , 2004 .

[89]  Stefano Baroni,et al.  DENSITY-FUNCTIONAL PERTURBATION THEORY , 2005 .

[90]  T. Thirunamachandran,et al.  Molecular quantum electrodynamics : an introduction to radiation-molecule interactions , 1998 .

[91]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[92]  R. Parr,et al.  Long‐range behavior of natural orbitals and electron density , 1975 .

[93]  H. Appel,et al.  Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications , 2018, Advances in Physics.

[94]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[95]  I. Tanaka,et al.  $\texttt{Spglib}$: a software library for crystal symmetry search , 2018, 1808.01590.

[96]  Terry A. Miller,et al.  Information for : Imaging ultrafast molecular dynamics with laser-induced electron diffraction , 2012 .

[97]  I. Tokatly Time-dependent density functional theory for many-electron systems interacting with cavity photons. , 2013, Physical review letters.

[98]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[99]  H. Appel,et al.  Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State , 2017, ACS photonics.

[100]  Á. Rubio,et al.  Reduced Density-Matrix Approach to Strong Matter-Photon Interaction , 2018, ACS photonics.

[101]  M. Seth,et al.  Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism: calculation of B terms. , 2008, The Journal of chemical physics.

[102]  Á. Rubio,et al.  Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra , 2016, 1601.04544.

[103]  Mook,et al.  Neutron-scattering measurement of the spin-wave spectra for nickel. , 1985, Physical review letters.

[104]  H. Appel,et al.  Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry , 2019, Proceedings of the National Academy of Sciences.

[105]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[106]  Á. Rubio,et al.  Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor , 2019, Nano letters.

[107]  Pol Torres Alvarez,et al.  First Principles Calculations , 2018 .

[108]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[109]  H. Appel,et al.  Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry , 2016, Proceedings of the National Academy of Sciences.

[110]  Á. Rubio,et al.  Ultrafast Modification of Hubbard U in a Strongly Correlated Material: Ab initio High-Harmonic Generation in NiO. , 2017, Physical review letters.

[111]  A. Scrinzi,et al.  Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method , 2011, 1109.4053.

[112]  David A. Strubbe,et al.  Response Functions in TDDFT: Concepts and Implementation , 2012 .

[113]  I. Bialynicki-Birula On the Wave Function of the Photon , 1994 .

[114]  James R. Chelikowsky,et al.  Real-space pseudopotential method for first principles calculations of general periodic and partially periodic systems , 2008 .

[115]  David A. Strubbe,et al.  Orbital magneto-optical response of periodic insulators from first principles , 2018, npj Computational Materials.

[116]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[117]  X. Andrade,et al.  Negative differential conductivity in liquid aluminum from real-time quantum simulations , 2018, The European Physical Journal B.

[118]  F. García-Vidal,et al.  Cavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity , 2018, Physical Review X.

[119]  G. Iafrate,et al.  Derivation and application of an accurate Kohn-Sham potential with integer discontinuity , 1990 .

[120]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[121]  B. Canaud,et al.  Ab initio determination of thermal conductivity of dense hydrogen plasmas. , 2009, Physical review letters.

[122]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[123]  Kristjan Haule,et al.  Exact Double Counting in Combining the Dynamical Mean Field Theory and the Density Functional Theory. , 2015, Physical review letters.

[124]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[125]  Sawatzky,et al.  Local-density functional and on-site correlations: The electronic structure of La2CuO4 and LaCuO3. , 1994, Physical review. B, Condensed matter.

[126]  Kenneth Ruud,et al.  Complex polarization propagator calculations of magnetic circular dichroism spectra. , 2008, The Journal of chemical physics.

[127]  Kieron Burke,et al.  Basics of TDDFT , 2006 .

[128]  J. Tomasi,et al.  A time-dependent polarizable continuum model: theory and application. , 2005, The Journal of chemical physics.

[129]  C. Ullrich,et al.  Real-time electron dynamics with exact-exchange time-dependent density-functional theory. , 2007, Physical review letters.

[130]  Xavier Andrade Linear and non-linear response phenomena of molecular systems within time-dependent density functional theory , 2010 .

[131]  Angel Rubio,et al.  Real-space, real-time method for the dielectric function , 2000 .

[132]  E. Lieb,et al.  Müller’s exchange-correlation energy in density-matrix-functional theory , 2007, 0705.1587.

[133]  Jacopo Tomasi,et al.  A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics , 1997 .

[134]  Angel Rubio,et al.  Propagators for the time-dependent Kohn-Sham equations. , 2004, The Journal of chemical physics.

[135]  Á. Rubio,et al.  Light–matter interaction in the long-wavelength limit: no ground-state without dipole self-energy , 2018, 1807.03635.

[136]  C. Rozzi,et al.  Modeling solvation effects in real-space and real-time within density functional approaches. , 2015, The Journal of chemical physics.

[137]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[138]  R. Nieminen,et al.  Real-space electronic-structure calculations: Combination of the finite-difference and conjugate-gradient methods. , 1995, Physical review. B, Condensed matter.

[139]  X. Gonze,et al.  Density-functional approach to nonlinear-response coefficients of solids. , 1989, Physical review. B, Condensed matter.

[140]  Xavier Andrade,et al.  Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. , 2015, Physical chemistry chemical physics : PCCP.

[141]  David A. Strubbe Optical and Transport Properties of Organic Molecules: Methods and Applications , 2012 .

[142]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[143]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[144]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[145]  H. Appel,et al.  Light-Matter Response Functions in Quantum-Electrodynamical Density-Functional Theory: Modifications of Spectra and of the Maxwell Equations , 2018, 1803.02519.

[146]  M. Seth,et al.  Application of magnetically perturbed time-dependent density functional theory to magnetic circular dichroism. II. Calculation of A terms. , 2008, The Journal of chemical physics.

[147]  Francois Gygi,et al.  Optimization algorithm for the generation of ONCV pseudopotentials , 2015, Comput. Phys. Commun..

[148]  Á. Rubio,et al.  First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory , 2018, The European Physical Journal B.

[149]  S. Y. Savrasov Linear Response Calculations of Spin Fluctuations , 1998 .

[150]  E. Gross,et al.  Fundamentals of time-dependent density functional theory , 2012 .

[151]  Bruce A. Garett Molecular Light Scattering and Optical Activity, 2nd ed , 2005 .

[152]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[153]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[154]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[155]  J. Tomasi,et al.  Nonequilibrium solvation theory for the polarizable continuum model: A new formulation at the SCF level with application to the case of the frequency‐dependent linear electric response function , 1995 .

[156]  Marco Buongiorno Nardelli,et al.  Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery , 2015 .

[157]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[158]  L. Sandratskii,et al.  Energy Band Structure Calculations for Crystals with Spiral Magnetic Structure , 1986 .

[159]  R. Sillitto The Quantum Theory of Light , 1974 .

[160]  L. Kronik,et al.  Orbital-dependent density functionals: Theory and applications , 2008 .

[161]  Kenneth Ruud,et al.  The A and B terms of magnetic circular dichroism revisited. , 2008, The journal of physical chemistry. A.

[162]  H Germany,et al.  Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling , 2018, Physical Review A.

[163]  Angel Rubio,et al.  Ab Initio Simulation of Attosecond Transient Absorption Spectroscopy in Two-Dimensional Materials , 2018, Applied Sciences.

[164]  Á. Rubio,et al.  A First-Principles Time-Dependent Density Functional Theory Framework for Spin and Time-Resolved Angular-Resolved Photoelectron Spectroscopy in Periodic Systems. , 2017, Journal of chemical theory and computation.

[165]  Angel Rubio,et al.  From a quantum-electrodynamical light–matter description to novel spectroscopies , 2018 .

[166]  D. Ceresoli,et al.  Subsystem real-time time dependent density functional theory. , 2015, The Journal of chemical physics.

[167]  Xavier Andrade,et al.  Insights into colour-tuning of chlorophyll optical response in green plants. , 2015, Physical chemistry chemical physics : PCCP.

[168]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[169]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[170]  N. Tancogne-Dejean,et al.  Time-Dependent Magnons from First Principles , 2020, Journal of chemical theory and computation.

[171]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[172]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[173]  X. Andrade,et al.  Efficient formalism for large-scale ab initio molecular dynamics based on time-dependent density functional theory. , 2007, Physical review letters.

[174]  Á. Rubio,et al.  All-optical nonequilibrium pathway to stabilising magnetic Weyl semimetals in pyrochlore iridates , 2018, Nature Communications.

[175]  J. Metzdorf,et al.  Landau Level Spectroscopy: Interband Effects and Faraday Rotation , 1991 .

[176]  J. Tomasi,et al.  Electronic excitation energies of molecules in solution within continuum solvation models: investigating the discrepancy between state-specific and linear-response methods. , 2005, The Journal of chemical physics.

[177]  H. Appel,et al.  Quantum electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory , 2014, 1403.5541.

[178]  L. Silberstein Elektromagnetische Grundgleichungen in bivektorieller Behandlung , 1907 .