Unsupervised contour representation and estimation using B-splines and a minimum description length criterion

This paper describes a new approach to adaptive estimation of parametric deformable contours based on B-spline representations. The problem is formulated in a statistical framework with the likelihood function being derived from a region-based image model. The parameters of the image model, the contour parameters, and the B-spline parameterization order (i.e., the number of control points) are all considered unknown. The parameterization order is estimated via a minimum description length (MDL) type criterion. A deterministic iterative algorithm is developed to implement the derived contour estimation criterion, the result is an unsupervised parametric deformable contour: it adapts its degree of smoothness/complexity (number of control points) and it also estimates the observation (image) model parameters. The experiments reported in the paper, performed on synthetic and real (medical) images, confirm the adequate and good performance of the approach.

[1]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[3]  Tai Sing Lee,et al.  Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[4]  Mário A. T. Figueiredo,et al.  Bayesian estimation of ventricular contours in angiographic images , 1992, IEEE Trans. Medical Imaging.

[5]  Günther Nürnberger,et al.  Bivariate segment approximation and free knot splines: Research problems 96-4 , 1996 .

[6]  Richard M. Leahy,et al.  An approximate method of evaluating the joint likelihood for first-order GMRFs , 1993, IEEE Trans. Image Process..

[7]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[8]  P. Saint-Marc,et al.  Active contour models: overview, implementation and applications , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[9]  Fernand S. Cohen,et al.  Part I: Modeling Image Curves Using Invariant 3-D Object Curve Models-A Path to 3-D Recognition and Shape Estimation from Image Contours , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[11]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[12]  José M. N. Leitão,et al.  A nonsmoothing approach to the estimation of vessel contours in angiograms , 1995, IEEE Trans. Medical Imaging.

[13]  José M. N. Leitão,et al.  Wall position and thickness estimation from sequences of echocardiographic images , 1996, IEEE Trans. Medical Imaging.

[14]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[15]  Zhaohui Huang,et al.  Affine-invariant B-spline moments for curve matching , 1996, IEEE Trans. Image Process..

[16]  Petia Radeva,et al.  A snake for model-based segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[17]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[18]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[21]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[22]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Amir A. Amini,et al.  Quantitative coronary angiography with deformable spline models , 1997, IEEE Transactions on Medical Imaging.

[25]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  David Mumford,et al.  Bayesian Rationale for the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.

[27]  Geir Storvik,et al.  A Bayesian Approach to Dynamic Contours Through Stochastic Sampling and Simulated Annealing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Amir A. Amini,et al.  Snakes and Splines for Tracking Non-Rigid Heart Motion , 1996, ECCV.

[29]  José M. N. Leitão,et al.  Adaptive B-splines and boundary estimation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Philippe Saint-Marc,et al.  B-spline Contour Representation and Symmetry Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[32]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[33]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[34]  Jun Zhang,et al.  The mean field theory in EM procedures for blind Markov random field image restoration , 1993, IEEE Trans. Image Process..

[35]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[36]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[37]  Jorge L. C. Sanz,et al.  Periodic quasi-orthogonal spline bases and applications to least-squares curve fitting of digital images , 1996, IEEE Trans. Image Process..

[38]  C.-C. Jay Kuo,et al.  Wavelet descriptor of planar curves: theory and applications , 1996, IEEE Trans. Image Process..

[39]  José M. N. Leitão,et al.  Adaptive Parametrically Deformable Contours , 1997, EMMCVPR.

[40]  Daniel Rueckert,et al.  Contour Fitting using an Adaptive Spline Model , 1995, BMVC.

[41]  James S. Duncan,et al.  Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[43]  José M. N. Leitão,et al.  Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle , 1997, IEEE Trans. Image Process..

[44]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Anil K. Jain,et al.  Vehicle Segmentation and Classification Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .