Unsupervised contour representation and estimation using B-splines and a minimum description length criterion
暂无分享,去创建一个
[1] Anil K. Jain,et al. Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[2] Jerry L. Prince,et al. Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..
[3] Tai Sing Lee,et al. Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.
[4] Mário A. T. Figueiredo,et al. Bayesian estimation of ventricular contours in angiographic images , 1992, IEEE Trans. Medical Imaging.
[5] Günther Nürnberger,et al. Bivariate segment approximation and free knot splines: Research problems 96-4 , 1996 .
[6] Richard M. Leahy,et al. An approximate method of evaluating the joint likelihood for first-order GMRFs , 1993, IEEE Trans. Image Process..
[7] Jorma Rissanen,et al. Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.
[8] P. Saint-Marc,et al. Active contour models: overview, implementation and applications , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.
[9] Fernand S. Cohen,et al. Part I: Modeling Image Curves Using Invariant 3-D Object Curve Models-A Path to 3-D Recognition and Shape Estimation from Image Contours , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[10] C. R. Deboor,et al. A practical guide to splines , 1978 .
[11] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[12] José M. N. Leitão,et al. A nonsmoothing approach to the estimation of vessel contours in angiograms , 1995, IEEE Trans. Medical Imaging.
[13] José M. N. Leitão,et al. Wall position and thickness estimation from sequences of echocardiographic images , 1996, IEEE Trans. Medical Imaging.
[14] Jorma Rissanen,et al. Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.
[15] Zhaohui Huang,et al. Affine-invariant B-spline moments for curve matching , 1996, IEEE Trans. Image Process..
[16] Petia Radeva,et al. A snake for model-based segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.
[17] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .
[18] Laurent D. Cohen,et al. Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[19] James S. Duncan,et al. Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Anil K. Jain,et al. Deformable template models: A review , 1998, Signal Process..
[21] Paul Dierckx,et al. Curve and surface fitting with splines , 1994, Monographs on numerical analysis.
[22] Alan L. Yuille,et al. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[23] Alok Gupta,et al. Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[24] Amir A. Amini,et al. Quantitative coronary angiography with deformable spline models , 1997, IEEE Transactions on Medical Imaging.
[25] Ramesh C. Jain,et al. Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[26] David Mumford,et al. Bayesian Rationale for the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.
[27] Geir Storvik,et al. A Bayesian Approach to Dynamic Contours Through Stochastic Sampling and Simulated Annealing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[28] Amir A. Amini,et al. Snakes and Splines for Tracking Non-Rigid Heart Motion , 1996, ECCV.
[29] José M. N. Leitão,et al. Adaptive B-splines and boundary estimation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[30] Philippe Saint-Marc,et al. B-spline Contour Representation and Symmetry Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[31] C. Robert. The Bayesian choice : a decision-theoretic motivation , 1996 .
[32] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[33] U. Grenander,et al. Structural Image Restoration through Deformable Templates , 1991 .
[34] Jun Zhang,et al. The mean field theory in EM procedures for blind Markov random field image restoration , 1993, IEEE Trans. Image Process..
[35] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[36] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[37] Jorge L. C. Sanz,et al. Periodic quasi-orthogonal spline bases and applications to least-squares curve fitting of digital images , 1996, IEEE Trans. Image Process..
[38] C.-C. Jay Kuo,et al. Wavelet descriptor of planar curves: theory and applications , 1996, IEEE Trans. Image Process..
[39] José M. N. Leitão,et al. Adaptive Parametrically Deformable Contours , 1997, EMMCVPR.
[40] Daniel Rueckert,et al. Contour Fitting using an Adaptive Spline Model , 1995, BMVC.
[41] James S. Duncan,et al. Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
[42] Demetri Terzopoulos,et al. Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.
[43] José M. N. Leitão,et al. Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle , 1997, IEEE Trans. Image Process..
[44] Sridhar Lakshmanan,et al. Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[45] Anil K. Jain,et al. Vehicle Segmentation and Classification Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[46] Brian D. Ripley,et al. Pattern Recognition and Neural Networks , 1996 .