Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1

[1]  D. Sassoon,et al.  Faculty Opinions recommendation of Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[2]  M. Baptista,et al.  Congenital anomalies of the coronary arteries. , 2018, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology.

[3]  Byoung Choul Kim,et al.  Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity , 2017, Science.

[4]  N. Hay,et al.  Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium , 2016, Nature Communications.

[5]  Ru-Fang Li,et al.  Nr2f1b control venous specification and angiogenic patterning during zebrafish vascular development , 2015, Journal of Biomedical Science.

[6]  Emily J. Farrar,et al.  Notch-Tnf signalling is required for development and homeostasis of arterial valves , 2015, European heart journal.

[7]  I. Weissman,et al.  Pericytes are progenitors for coronary artery smooth muscle , 2015, eLife.

[8]  Adam Friedman,et al.  Fidgetin-Like 2: A Microtubule-Based Regulator of Wound Healing. , 2015, The Journal of investigative dermatology.

[9]  A. Eichmann,et al.  Molecular controls of arterial morphogenesis. , 2015, Circulation research.

[10]  K. Alitalo,et al.  VEGFR3 does not sustain retinal angiogenesis without VEGFR2 , 2015, Proceedings of the National Academy of Sciences.

[11]  J. Lasheras,et al.  FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells , 2014, Scientific Reports.

[12]  Alexis Gautreau,et al.  Quantitative and unbiased analysis of directional persistence in cell migration , 2014, Nature Protocols.

[13]  W. Pu,et al.  De novo formation of a distinct coronary vascular population in neonatal heart , 2014, Science.

[14]  M. Simons,et al.  Endothelial Cell–Dependent Regulation of Arteriogenesis , 2013, Circulation research.

[15]  M. Memo,et al.  Notch signalling in adult neurons: a potential target for microtubule stabilization , 2013, Therapeutic advances in neurological disorders.

[16]  V. Taylor,et al.  Endocardial to Myocardial Notch-Wnt-Bmp Axis Regulates Early Heart Valve Development , 2013, PloS one.

[17]  D. Zheng,et al.  Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling , 2012, Cell.

[18]  K. G. Guruharsha,et al.  The Notch signalling system: recent insights into the complexity of a conserved pathway , 2012, Nature Reviews Genetics.

[19]  Antonio Duarte,et al.  Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF–VEGFR2 signalling , 2012, Nature.

[20]  C. Tabin,et al.  Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. , 2012, Developmental cell.

[21]  K. Mequanint,et al.  The role of endothelial cell-bound Jagged1 in Notch3-induced human coronary artery smooth muscle cell differentiation. , 2012, Biomaterials.

[22]  Thaned Kangsamaksin,et al.  Notch signaling in developmental and tumor angiogenesis. , 2011, Genes & cancer.

[23]  J. Pollard,et al.  VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling , 2011, Nature Cell Biology.

[24]  K. Alitalo,et al.  Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. , 2011, Blood.

[25]  E. Ashley,et al.  Chromatin regulation by Brg1 underlies heart muscle development and disease , 2010, Nature.

[26]  J. L. de la Pompa,et al.  Differential Notch Signaling in the Epicardium Is Required for Cardiac Inflow Development and Coronary Vessel Morphogenesis , 2011, Circulation research.

[27]  J. Corbo,et al.  Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. , 2011, The Journal of clinical investigation.

[28]  I. Weissman,et al.  Coronary arteries form by developmental reprogramming of venous cells , 2010, Nature.

[29]  Marcus Fruttiger,et al.  The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis , 2009, Cell.

[30]  R. Adams,et al.  DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. , 2009, Blood.

[31]  B. Weinstein,et al.  Arterial–Venous Specification During Development , 2009, Circulation research.

[32]  B. Lilly,et al.  NOTCH3 Expression Is Induced in Mural Cells Through an Autoregulatory Loop That Requires Endothelial-Expressed JAGGED1 , 2009, Circulation research.

[33]  C. Mailhos,et al.  Delta-like 4 is indispensable in thymic environment specific for T cell development , 2008, The Journal of experimental medicine.

[34]  Antonio Duarte,et al.  Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation , 2008, Nature.

[35]  Yunfu Sun,et al.  A myocardial lineage derives from Tbx18 epicardial cells , 2008, Nature.

[36]  Jussi Taipale,et al.  Deletion of Vascular Endothelial Growth Factor C (VEGF-C) and VEGF-D Is Not Equivalent to VEGF Receptor 3 Deletion in Mouse Embryos , 2008, Molecular and Cellular Biology.

[37]  P. Stanley,et al.  Roles of Pofut1 and O-Fucose in Mammalian Notch Signaling* , 2008, Journal of Biological Chemistry.

[38]  K. Kaestner,et al.  Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development , 2008, Proceedings of the National Academy of Sciences.

[39]  R. Adams,et al.  Regulation of vascular morphogenesis by Notch signaling. , 2007, Genes & development.

[40]  Weidong Jiang,et al.  Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. , 2007, Blood.

[41]  P. Angelini Coronary Artery Anomalies: An Entity in Search of an Identity , 2007, Circulation.

[42]  G. Thurston,et al.  Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting , 2007, Proceedings of the National Academy of Sciences.

[43]  Antonio Duarte,et al.  The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching , 2007, Proceedings of the National Academy of Sciences.

[44]  Holger Gerhardt,et al.  Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis , 2007, Nature.

[45]  Nathan D. Lawson,et al.  Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries , 2007, Nature.

[46]  C. Ellingsen,et al.  [Coronary artery anomalies as a cause of sudden death in young people]. , 2007, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[47]  Napoleone Ferrara,et al.  Angiogenesis as a therapeutic target , 2005, Nature.

[48]  R. Tomanek Formation of the coronary vasculature during development , 2005, Angiogenesis.

[49]  B. Black,et al.  Transgenic mice that express Cre recombinase under control of a skeletal muscle‐specific promoter from mef2c , 2005, Genesis.

[50]  B. Clurman,et al.  Notch Activation Induces Endothelial Cell Cycle Arrest and Participates in Contact Inhibition: Role of p21Cip1 Repression , 2004, Molecular and Cellular Biology.

[51]  Donna J. Webb,et al.  FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly , 2004, Nature Cell Biology.

[52]  A. Xu,et al.  Modulation of Notch-Ligand Binding by Protein O-Fucosyltransferase 1 and Fringe* , 2003, Journal of Biological Chemistry.

[53]  B. Hogan,et al.  An essential role of Bmp4 in the atrioventricular septation of the mouse heart. , 2003, Genes & development.

[54]  Rakesh K Jain,et al.  Molecular regulation of vessel maturation , 2003, Nature Medicine.

[55]  P. Stanley,et al.  Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Holger Gerhardt,et al.  Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. , 2002, Genes & development.

[57]  R. Hammer,et al.  Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Stanley,et al.  Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. , 2001, The Journal of biological chemistry.

[59]  R. Fässler,et al.  Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice. , 2001, Journal of cell science.

[60]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[61]  J. Rosenbaum,et al.  The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules , 1986, The Journal of cell biology.

[62]  K. Garcia,et al.  Structural biology. Structural basis for Notch1 engagement of Delta-like 4. , 2015, Science.

[63]  P. Stanley,et al.  Roles of glycosylation in Notch signaling. , 2010, Current topics in developmental biology.

[64]  Jonathan A. Epstein,et al.  The multifaceted role of Notch in cardiac development and disease , 2008, Nature Reviews Genetics.

[65]  F. High Notch signaling in cardiac development , 2007 .

[66]  T. Rapoport,et al.  JCB Article , 2001 .

[67]  A. Fraisse,et al.  Images in cardiovascular medicine. Myocardial infarction in children with hypoplastic coronary arteries. , 2000, Circulation.

[68]  T. Mikawa,et al.  This Review Is Part of a Thematic Series on Genetics of Cardiovascular Development, Which Includes the following Articles: Transcriptional Regulation of Vertebrate Cardiac Morphogenesis Cardiac Septation: a Late Contribution of the Embryonic Primary Myocardium to Heart Morphogenesis Early Signals in , 2022 .